
Following Trajectories on a Quadrotor using a
Linear Feedback Model

Guan Sun
School of Engineering and

Applied Science
University of Pennsylvania

Email: guansun@seas.upenn.edu

Nitin J. Sanket
School of Engineering and

Applied Science
University of Pennsylvania

Email: nitinsan@seas.upenn.edu

Caio Cesar R. Mucchiani
School of Engineering and

Applied Science
University of Pennsylvania

Email: caio@seas.upenn.edu

Abstract—A linear control model for quadrotor trajectory
following is presented in this report. Smooth path stitching
between waypoints is accomplished by the use of cubic spline.
The linearized approximation of a non-linear model is used for a
proportional-derivative based control. Position control is carried
out on the position data obtained from VICON motion capture
system.

r Desired position vector
ract Current position vector
rcmd Commanded acceleration
ψ Desired yaw
ψact Current yaw
e Error
g Acceleration due to gravity (9.81 m/s)
m Mass of the quadrotor
Kp Proportional gain
Kd Derivative gain
Ftot Total force exerted by the motors

I. INTRODUCTION

Control of quadrotors has gained momentum in the recent
years [1] due to the cost effectiveness of manufacture of these
systems. A lot of work is still ongoing in this area to design
robust control systems under varied conditions.
The general control strategies can be divided into two main
sub-categories [2], namely, (a) Linear Control and (b) Non-
Linear Control. The later strategy is more computation inten-
sive and robust and can handle almost any 3D pose. However,
for our purposes a linear control model is sufficient as the
trajectories are smooth and do not involve extreme maneuvers
[3].

Fig. 1. Cubic Spline via 3 points.

II. PROBLEM DEFINITION AND SOLUTIONS

The problem statement was to develop and implement
algorithms for path planning (using A∗ search) [4], collision
avoidance, path shortening and collision avoidance (Collec-
tively called trajectory generation). The final phase of the
project was to test out the trajectory generation and control
algorithms [5] on a KMel Nano+ quadrotor [6]. The prob-
lems in implementing the aforementioned is that a quadrotor
inherently has non-linear dynamics and we are trying to fit a
linear model to it. Also the path planning has to be fast enough
for real time control of the quadrotor. Some of the solutions
we came up with for these problems were:
(a) Make the path smooth and continuous without aggressive
maneuvers so that a linear control model would suffice.
(b) Path planning was performed using a cubic spline trajectory
generator.

III. LINEAR CONTROL MODEL

To linearize the non-linear dynamics of a quadrotor the
following assumptions are made:

1) The quadrotor is near the “hover” position, i.e.,
banking angles are small.

2) The actual motor velocities ωi are equal to the
commanded motor velocities ωdes.

3) The quadrotor is symmetric with respect to X and Y
axes.

−1.78 −1.76 −1.74 −1.72 −1.7 −1.68 −1.66 −1.64
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

X axis (m)

Z
 a

x
is

 (
m

)

−1.5 −1.45 −1.4 −1.35 −1.3
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

Y axis (m)

Z
 a

x
is

 (
m

)

−1.78

−1.76

−1.74

−1.72

−1.7

−1.68

−1.66

−1.64
−1.5 −1.45 −1.4 −1.35 −1.3

Y axis (m)

X
 a

x
is

 (
m

)

Fig. 2. Data Log for Hover.



Fig. 3. Rejection of distrubances in hover state: (a) Quadrotor in hover state, (b) & (c) Sequence showing disturbance being applied in -Z direction, (d)
Quadrotor released, and (e) Quadrotor goes back to desired hover state.

A. Controller Design

For near-hover state, we get the position error as,

ei = (ri,act − ri)

The required condition for this error to exponentially go to
zero is,

(r̈i,act − r̈i,cmd) +Kd,i (ṙi,act − ṙi) +Kp,i (ri,act − ri) = 0

Hence the commanded acceleration is,

r̈i,cmd = r̈i,act +Kd,i (ṙi,act − ṙi) +Kp,i (ri,act − ri)

Since the bank angle changes are small, we get,

∆θ = θ − θ0 ≈ θ, ∆φ = φ− φ0 ≈ φ

r̈1,des = g (θdes cosψact + φdes sinψact)
r̈2,des = g (θdes sinψact − φdes sinψact)
r̈3,des = 1

mFtot − g

Rearranging the above equations we get,

Ftot = mg +mr̈3,des

Also the desired roll and pitch angles are given by,

φdes = 1
g (r̈1,des sinψact − r̈2,des cosψact)

θdes = 1
g (r̈1,des cosψact + r̈2,des sinψact)

As the heading yaw direction does not matter to us, we set it
to zero, i.e.,

ψdes = 0

The position PD controller gains used by us were Kp =
[10, 10, 15] and Kd = [5, 5, 7] (represented as [X, Y, Z] axes
gains).

IV. CUBIC SPLINE TRAJECTORY VIA WAYPOINTS

To minimize the square functional for a minimum
acceleration trajectory, we obtain the minimum order of the
equation to be 3 from Euler-Lagrange equation. A simple
example of how this trajectory is formed for 3 waypoints is
illustrated in Fig. 1.

Let the spline between points 1 and 2 be represented as

f(t) = a0 + a1t+ a2t
2 + a3t

3

and the spline between points 2 and 3 be

f(t) = b0 + b1t+ b2t
2 + b3t

3

Now, we have to solve the following matrix equation to get
the coefficients,



a0
a1
a2
a3
b0
b1
b2
b3


=



1 t0 t0
2 t0

3 0 0 0 0
0 1 2t0 3t0

2 0 0 0 0
1 t1 t1

2 t1
3 0 0 0 0

0 0 0 0 1 t1 t1
2 t1

3

0 1 2t1 3t1
2 0 −1 −2t1 −3t1

2

0 0 2 6t1 0 0 −2 −6t1
0 0 0 0 1 t2 t2

2 t2
3

0 0 0 0 0 1 2t2 3t2
2



−1 

x0
ẋ0
x1
x1
0
0
x2
ẋ2


The same concept was used for n waypoints (waypoint count-
ing starts from 0), where we get 4 × n coefficients and
conditions and the square matrix is of size 4n× 4n.

V. IMPLEMENTATION AND RESULTS

The KMel Nano+ quadrotor [7] has the communication
architecture shown in Fig. 4.

As seen in Fig. 4, there are two MATLAB instances running
at any moment in time. They are named High Level Matlab
(HLM) and Low Level Matlab (LLM). LLM runs the control
loop of the quadrotor and also runs the trajectory generator
during system initialization, whereas HLM sends the action
command(s) and waypoint information to the LLM.



We conducted 3 experiments to quantify the performance
of our algorithms,

1) Hover: To test the hover controller, here we com-
mand the quadrotor to stay at a fixed position in
space wherein we apply disturbance and check if

Fig. 4. Communication Architecture of KMel Nano+ quadrotor (Image
adopted from [8]).

500 1000 1500 2000 2500 3000
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

E
rr

o
r 

(m
)

Time (cs)

Error in X, Y and Z

 

 

X Error

Y Error

Z Error

Fig. 5. Error for Hover.

−2 −1.5 −1 −0.5 0 0.5

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

X axis (m)

Z
 a

x
is

 (
m

)

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Y axis (m)

Z
 a

x
is

 (
m

)

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2
−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0

Y axis (m)

X
 a

x
is

 (
m

)

Fig. 6. Data Log for Single Waypoint.

the quadrotor returns to its fixed position. This ex-
periment was helpful in fine tuning the gains of the
quadrotor.

2) One Waypoint: This experiment was used to test if

100 200 300 400 500 600 700 800
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E
rr

o
r 

(m
)

Time (cs)

Error in X, Y and Z

 

 

X Error

Y Error

Z Error

Fig. 7. Error for Single Waypoint.

−1.5 −1 −0.5 0 0.5 1 1.5

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.2

1.21

1.22

X axis (m)

Z
 a

x
is

 (
m

)

−1.5 −1 −0.5 0 0.5 1

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.2

1.21

1.22

Y axis (m)

Z
 a

x
is

 (
m

)

−1.5

−1

−0.5

0

0.5

1

1.5
−1.5 −1 −0.5 0 0.5 1

Y axis (m)

X
 a

x
is

 (
m

)

Fig. 8. Desired and Actual Trajectories for Waypoints 1.

−1.5 −1 −0.5 0 0.5 1 1.5 2

0.8

1

1.2

1.4

1.6

1.8

2

2.2

X axis (m)

Z
 a

x
is

 (
m

)

−1.5 −1 −0.5 0 0.5 1 1.5

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Y axis (m)

Z
 a

x
is

 (
m

)

−1.5

−1

−0.5

0

0.5

1

1.5

2
−1.5 −1 −0.5 0 0.5 1 1.5

Y axis (m)

X
 a

x
is

 (
m

)

Fig. 9. Desired and Actual Trajectories for Waypoints 2.

−1.5 −1 −0.5 0 0.5 1 1.5
0.8

1

1.2

1.4

1.6

1.8

2

X axis (m)

Z
 a

x
is

 (
m

)

−1.5 −1 −0.5 0 0.5 1 1.5
0.8

1

1.2

1.4

1.6

1.8

2

Y axis (m)

Z
 a

x
is

 (
m

)

−1.5

−1

−0.5

0

0.5

1

1.5
−1.5 −1 −0.5 0 0.5 1 1.5

Y axis (m)

X
 a

x
is

 (
m

)

Fig. 10. Desired and Actual Trajectories for Waypoints 3.



the quadrotor can go to a commanded waypoint from
hover.

3) Multi Waypoints: This experiment was used to test if
the quadrotor can go through a set of commanded

−1.5 −1 −0.5 0 0.5 1
1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

X axis (m)

Z
 a

x
is

 (
m

)

−1.5 −1 −0.5 0 0.5 1 1.5
1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

Y axis (m)

Z
 a

x
is

 (
m

)

−1.5

−1

−0.5

0

0.5

1
−1.5 −1 −0.5 0 0.5 1 1.5

Y axis (m)

X
 a

x
is

 (
m

)

Fig. 11. Desired and Actual Trajectories for Waypoints 4.

200 400 600 800 1000 1200
−0.04

−0.02

0

0.02

0.04

0.06

0.08

E
rr

o
r 

(m
)

Time (cs)

Error in X, Y and Z

 

 

X Error

Y Error

Z Error

Fig. 12. Error for Waypoints 1.

500 1000 1500 2000 2500 3000
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

E
rr

o
r 

(m
)

Time (cs)

Error in X, Y and Z

 

 

X Error

Y Error

Z Error

Fig. 13. Error for Waypoints 2.

500 1000 1500 2000 2500
−0.04

−0.02

0

0.02

0.04

0.06

0.08

E
rr

o
r 

(m
)

Time (cs)

Error in X, Y and Z

 

 

X Error

Y Error

Z Error

Fig. 14. Error for Waypoints 3.

200 400 600 800 1000 1200 1400 1600 1800 2000
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

E
rr

o
r 

(m
)

Time (cs)

Error in X, Y and Z

 

 

X Error

Y Error

Z Error

Fig. 15. Error for Waypoints 4.

waypoints from hover. This test was intended to
test our cubic spline trajectory generator and the
controller.

The previously described algorithms were implemented on a
KMel Nano+ quadrotor and the data was logged.

A. Hover Experiment

The quadrotor was commanded to go to the position
indicated by the black star in the Fig. 2. The quadrotor was
disturbed to see if it went back to the original position.
A sequence of images showing disturbances applied to the
quadrotor in hover state are shown in Fig. 3. The error plot
(e = r−ract) is shown in Fig. 5. Observing closely we see that
there is always a small offset in Z direction, this maybe due
to the value of Kp in Z direction being smaller than necessary
or thrust output from propellers not being uniform.

B. One Waypoint Experiment

The quadrotor was commanded to go to the position [0 0
1.5] from its hover position. Here, the blue line corresponds to
the desired trajectory and the red line corresponds to the actual
trajectory. The recoded data is shown in Fig. 6. The error plot
is shown in Fig. 7.

C. Multi Waypoints Experiment

The quadrotor was commanded to execute 4 different
trajectories. The corresponding plots are shown in Figs. 8, 9,
10 and 11. The error for each of the trajectories is shown in
Figs. 12, 13, 14 and 15.

VI. CONCLUSION

The linear control model for the quadrotor performed as
expected for all trajectories, considering their smoothness and
lack of extreme maneuvers. The use of a cubic spline for
trajectory generation had an effective outcome for all single
and milt-waypoint tests, and for the hover test, the disturbances
manually applied to the quadrotor were useful calibration tools
for the controller gains. Finally, the steady state errors for all
navigation modes in the X, Y and Z directions were smaller
than 0.07m indicating the linearization of the system dynamics
did not affect the results considerably, as expected.



ACKNOWLEDGMENT

The authors would like to thank Dr. Vijay Kumar and all
the Teaching Assistants of MEAM 620 course for all the help
in accomplishing this project.

REFERENCES

[1] Vijay Kumar, and Nathan Michael, Opportunities and challenges with
autonomous micro aerial vehicles, The International Journal of Robotics
Research, pp. 1279–1291, 2012.

[2] Samir Bouabdallah, Design and control of quadrotors with application
to autonomous flying, Diss. cole Polytechnique federale de Lausanne,
2007.

[3] MEAM 620 instructors at Univeristy of Pennsylvania, Dynamic Model-
ing, Control and Simulation of an Autonomous Quadrotor, MEAM 620:
Project 1 Phase 2, 2015.

[4] MEAM 620 team at Univeristy of Pennsylvania, Path Planning (in 3D!),
MEAM 620: Project 1 Phase 1, 2015.

[5] MEAM 620 instructors at Univeristy of Pennsylvania, Trajectory Gen-
eration and Control of a Quadrotor, MEAM 620: Project 1 Phase 3,
2015.

[6] MEAM 620 instructors at Univeristy of Pennsylvania, MEAM 620
Project 1 Phase 4, MEAM 620: Project 1 Phase 4, 2015.

[7] KMel Robotics, http://kmelrobotics.com/.
[8] MEAM 620 instructors at Univeristy of Pennsylvania, MEAM 620 Lab

Manual, MEAM 620 Lab Manual, 2015.

http://kmelrobotics.com/

	Introduction
	Problem Definition and Solutions
	Linear Control Model
	Controller Design

	Cubic Spline Trajectory Via Waypoints
	Implementation and Results
	Hover Experiment
	One Waypoint Experiment
	Multi Waypoints Experiment

	Conclusion
	References

