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Abstract—In this report the Madgwick Filter is implemented
on an IMU dataset that was given as a part of the first week’s
assignment of the course ENAE788M: Hands on Autonomous
Aerial Robotics. The performance of the filter is compared with
attitude estimations from the IMU’s Accelerometer, Gyroscope
and a complementary filter fusion of both the Accelerometer and
Gyroscope data. Additionally, Vicon data is used as the ground
truth to show the remarkable accuracy of the Madgwick Filter’s
attitude estimates.

I. INTRODUCTION

In many aerospace and robotics applications, accurately
measuring the system’s orientation plays a vital role for
supplying feedback to the autopilot or the controllers. A
very popular sensor for measuring orientation is an IMU
(Inertial Measurement unit). It consists of tri-axis gyroscopes
and accelerometers. Gyroscopes measures the angular velocity,
which can be integrated over time from some known initial
condition to estimate the sensor’s orientation. The numerical
integration technique is prone to accumulation of errors over
time which leads to a drift in the estimated orientation from the
true orientation. On the other hand, an accelerometer measures
the earth’s gravitational field and therefore can provide orien-
tation estimates from an absolute frame of reference. However,
any translational motion will result in corrupted measurements
of earth’s gravity and consequently the orientation estimates
suffers. This particular problem can be handled by using an
orientation filter that estimates a single estimate of orientation
by fusing the accelerometer and gyroscope measurements
provided by an IMU.
Link to the result videos: Click Here

II. MATHEMATICAL DETAILS

A. IMU Data Pre-Processing

Data gathered from the IMU must first be pre-processed
to convert into physical units and to negate bias inherent to
the instrumentation. The following expression describes the
conversion of raw accelerometer readings a = [ax ay az]T to
acceleration data in m/s2.

ãi = 9.81(ai ∗ si + ba,i) (1)

where si is a scale factor of the accelerometer for each axis
and ba,i is the bias for each axis.

To convert the raw gyro angular velocity reading ω =
[ωx ωy ωz]T into angular velocity data in rad/s, the following
expression is used.

ω̃i =
3300

1023
∗ π

180
∗ .3 ∗ (ωi − bg,i) (2)

where bg,i is calculated as the average of the first 200 raw
angular velocity reading samples for each axis of rotation.

B. Attitude Quaternions

The representation of attitude/orientation using Euler An-
gles is associated with the problem of singularity. This can be
mitigated by the use of unit length four-dimensional complex
numbers called attitude quaternions. Quaternions comprise of
a single real element (represented by the subscript 0) and three
imaginary elements (represented by the subscripts 1, 2 and 3).
The following expression describes the attitude quaternion.

q = [q0 q1 q2 q3]T

||q||2 =

(
3∑

i=0

q2i

)1/2

= 1
(3)

A quaternion conjugate operator, denoted by ∗ is used to swap
the relative frames described by an orientation.

q∗ = [q1 − q2 − q3 − q4]T (4)

The quaternion product operator, denoted by ⊗ is used to
define compound orientations. For two quaternions. a and b.
the quaternion product can be computed using the Hamilton
rule as follows.

a⊗ b = [a0 a1 a2 a3]T ⊗ [b0 b1 b2 b3]T

=


a0b0 − a1b1 − a2b2 − a3b3
a0b1 + a1b0 + a2b3 − a3b2
a0b2 − a1b3 + a2b0 + a3b1
a0b3 + a1b2 − a2b1 + a3b0

 (5)

https://www.youtube.com/watch?v=OjUcgtvW5z4&list=PLPoYL2Gy7AEweQ_zzadJv_9mohZeH3yaj


It is also common to represent quaternions with scalar
and vector parts, in which case, the quaterion multiplication
formulation is written in a simplified manner as follows.

q = (r,~v), q ∈ H, r ∈ R, ~v ∈ R3

(r1, ~V1)⊗ (r2, ~V2) = (r1r2 − ~v1 · ~v2, r1~v2 + r2~v1 + ~v1 × ~v2)
(6)

To rotate a vector described in frame A to frame B, using a
quaterion that describes the orientation of frame B relative to
frame A, the following expression is typically used.

[0 Bv]T = q ⊗ [0 Av]T ⊗ q∗ (7)

The z-x-y Euler angle representation of q is defined by
equation (8).

ψ = arc tan 2(2q1q2 − 2q0q3, 2q20 + 2q21 − 1)

θ = − sin−1(2q1q3 + 2q0q2)

φ = arc tan 2(2q2q3 − 2q0q1, 2q20 + 2q23 − 1)

(8)

C. Madgwick Filter

A detailed description with mathematical derivation of the
Madgwick Filter can be found in [1]. The filter uses the
quaternion representation of orientation/attitude to avoid the
singularities that are inherent in the three-dimensional Euler
angle representation. A summary of the filter derivation steps
that are necessary to implement the filter digitally is provided
below.

1) Orientation from gyroscpe: The rate of change of the
attitude quaternion q̇ω can be calculated from the measured
3-axis gyroscope angular velocities ωx, ωy , ωz and the current
quaternion estimate q̂ as follows.

ω = [0 ωx ωy ωz]T

q̇ω =
1

2
q̂ ⊗ ω

(9)

Rather than integrating the quaternion derivative using lie
algebra (which is computationally costly), an approximation
of the quaternion integration step over time interval/sampling
time ∆t is formulated as follows.

qω = q̂ + q̇ω∆t (10)

2) Orientation from accelerometer: To calculate the at-
titude quaternion q̂ from the earth’s gravity g and 3-axis
accelerometer sensor which provides the gravity vector data
in the body frame ax, ay , az , an optimization problem is
formulated as follows.

min
q̂∈R4

f(q̂, g,a) (11)

f(q̂, g,a) = q̂∗ ⊗ g ⊗ q̂ − a (12)

where
a = [0 ax ay az]T

g = [0 0 0 1]
(13)

The solution to the optimization problem can be computed
using gradient descent algorithm. Representing the step size

as µ, the quaternion estimate at every iteration step k can be
computed as follows.

qk+1 = q̂k − µ
∇f(q̂, g,a)

||∇f(q̂, g,a)||
(14)

∇f(q̂, g,a) = JT (q̂, g)f(q̂, g,a) (15)

f =

2(q2q4 − q1q3)− ax
2(q1q2 + q3q4)− ay

1− q22 − q23 − az

 (16)

J =

−2q3 2q4 −2q1 2q2
2q2 2q1 2q4 2q3
0 −4q2 −4q3 0

 (17)

Assuming that µ is set at such a value that the convergence
rate governed by it is equal or greater than the physical
rate of change of orientation, one iteration is sufficient for
the optimization problem’s solution to converge within an
acceptable tolerance. The equation (14) can now be re-written
with a subscript ∇ to indicate the use of gradient descent as
follows.

q∇ = q̂k − µ
∇f
||∇f ||

(18)

3) Filter Fusion: The orientation estimates from gyro-
scope/angular velocities qw and from the accelerometer q∇ can
now be fused together using a weighted summation approach
as follows.

q̂ = βq∇ + (1− β)qω (19)

It must be noted that in (10), (18) and (19) the resultant
quaternion on the left-hand side of the equations move out of
the unit quaternion space and thus they no longer represent
the attitude/orientation of the body. To rectify this they must
be normalized after every time they are calculated.

III. RESULTS

Datasets 1 to 6 include Vicon measurements treated as
ground truth to compare the performance of the Madgwick
Filter. The Datasets 7 to 10 are the evaluation/test datasets
and do not contain the Vicon measurements.



A. Dataset 1

Fig. 1. Comparision of Attitude Estimation using the various filters with the
Vicon Ground Truth for the first datatset.

B. Dataset 2

Fig. 2. Comparision of Attitude Estimation using the various filters with the
Vicon Ground Truth for the second datatset.

C. Dataset 3

Fig. 3. Comparision of Attitude Estimation using the various filters with the
Vicon Ground Truth for the third datatset.

D. Dataset 4

Fig. 4. Comparision of Attitude Estimation using the various filters with the
Vicon Ground Truth for the fourth datatset.



E. Dataset 5

Fig. 5. Comparision of Attitude Estimation using the various filters with the
Vicon Ground Truth for the fifth datatset.

F. Dataset 6

Fig. 6. Comparision of Attitude Estimation using the various filters with the
Vicon Ground Truth for the sixth datatset.

G. Dataset 7

Fig. 7. Comparision of Attitude Estimation using the various filters for the
seventh datatset.

H. Dataset 8

Fig. 8. Comparision of Attitude Estimation using the various filters for the
eighth datatset.



I. Dataset 9

Fig. 9. Comparision of Attitude Estimation using the various filters for the
ninth datatset.

J. Dataset 10

Fig. 10. Comparision of Attitude Estimation using the various filters for the
tenth datatset.

IV. CONCLUSION

The results show that each method of computing attitude
provides an estimation of attitude varying in accuracy, with
the Madgwick filter providing the best estimate to the vicon
truth data. Roll and pitch is best estimated by all of the filters,
while yaw estimates suffer due to the accelerometer’s inherent
inability to measure accelerations about the yaw axis. The gyro
attitude estimation was the most prone to drift as integration
error accumulated with time. This led to varying performance
of the combined and Madgwick filters, particularly in yaw
where the accelerometer was unable to provide any estimate
of orientation to correct gyro drift. While the Madgwick

filter does not provide a perfect attitude estimate, it is still
robust in that error from gyro readings does not significantly
accumulate and discontinuities in raw data do not prevent the
filter from tracking the orientation accurately. Furthermore, the
implementation of the Madgwick filter is relatively simple and
computationally inexpensive, making it superior to the other
methods of attitude estimation studied in this project.
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