
ENAE788M Project 1b
Team Bouncing Rainbow Zebras

Erik Holum
Graduate Student

University of Maryland
Email: eholum@gmail.com

Edward Carney
Graduate Student

University of Maryland
Email: carneyedwardj@gmail.com

Derek Thompson
Graduate Student

University of Maryland
Email: derekbt@yahoo.com

Abstract—This project present results from determining ori-
entation of a platform from gyroscope and accelerometer mea-
surements. Results are presented using an implementation of the
Madgwick filter, the Kalman filter, and the Unscented Kalman
Filter (UKF). Results are compared to data captured by a Vicon
imaging system, and links to videos animating the orientation
through time are provided. While all filters provide adequate
tracking of the attitude the UKF filter can be seen to provide the
most accurate output as it most closely follows the Vicon data.

I. INTRODUCTION

The purpose of this project is to estimate the orientation of
a platform based on data collected from a mounted 6-Degree
of Freedom Inertial Measurement Unit (6 DoF IMU). This
was done using four different types of filters, an only linear
acceleration filter, an only gyroscopic filter, a complementary
filter, and a Madgwick filter. In all of cases, accelerometer bias
and scale data were provided; gyroscope bias was determined
for each data set based on the first three hundred gyroscope
measurements. These parameters allowed conversion of raw
data values to SI units. The filters were executed on 5 training
sets and 4 previously unseen sets. For the training data sets,
corresponding ‘truth’ orientation data was collected from a
Vicon motion capture system and was available for comparison
against estimated values.

In this report, we will discuss the implementation details
of each filter. Then present results comparing the computed
attitude estimates using each filter type. Relevant lessons and
observations are discussed.

II. SCALING AND REMOVING BIAS

This section describes the methods for estimating and
removing bias and scaling the raw data values collected from
the IMU to SI units for the accelerometer and gyroscope.

A. Accelerometer

To interpret the raw IMU accelerometer readings, the data
was multiplied by the given scale factor, sa and added to the
given accelerometer bias ba for each axis of the accelerometer.
This resulted in the measured acceleration as a function of
gravitational acceleration.

ˆ̃ai = ((ai × sa,i) + ba,i) (1)

This was done for each axis i ∈ {x, y, z}. The values for
both ba and sa were provided and were constant for each set
of data considered here.

B. Gyroscope

The data from the gyroscopes were also processed with a
known scale factor sg , but with a computed bias factor bg .
The scale factor was given from a IMU data sheet as,

sg =
3300

1023
× π

180
× 0.3 (2)

The gyroscope bias was calculated from the average of the
first 200 gyroscope measurements. The gyroscope is assumed
to be steady for the first 200 measurements of each data set
to determine initial angular rates. For each axis, the bias was
determined as

bg,i =
1

k

k∑
j=1

ωi (3)

where k = 200. These terms were used to calculate the
desired rad/s angular rate, ω̃, from the raw gyroscope data
using the equation below.

ω̃i = sg,i × (ωi × bg,i) (4)

Similar to the accelerometer readings, this was done for
each axis i ∈ {x, y, z}. Unlike the accelerometer data, the
bias value bg was computed for each data set.

III. INTERPRETING THE DATA

The data was initially read into the the script through the
MATLAB files and converted into arrays using the supporting
NumPy library in Python. The raw Vicon, IMU, and IMU
parameter data was stored for each individual test. In order
to compare the computed attitude during testing, the Vicon
data was converted from the provided rotation matrix format
to Roll, Pitch, and Yaw Euler angles. The rotation matrix
provided by the Vicon data is represented as follows,

R =

r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3

 ,
Euler angles were computed via the following conversions:



Roll, φ = tan−1(r3,2/r3,3) (5)

Pitch, θ = tan−1(−r3,1/
√
r2
3,2 + r2

3,3) (6)

Y aw, ψ = tan−1(r2,1/r1,1) (7)

These values formed the truth data against which the
estimated values could be compared.

IV. KALMAN FILTER

For our own understanding, and because it was simpler
to implement, we tried our hand at writing a basic Kalman
filter as described in both the slides and references provided.
Our methods are summarized in this section. However, we
found tuning the gains to be particularly cumbersome. Also,
regardless of what we tried there were some scenarios where
we were unable to get our implementation to out perform
the simple complementary filter from problem set 1a. Rather
than spend more time debugging this, we felt that even the
basic implementation was enough to get a better handle on
understanding gains and concepts; therefore, we include the
somewhat under-performing filter regardless.

The measurement model estimates the system state µ̄,
through a linear motion model. This uses the current state
estimate, linear model A, system input matrix B, and input
ut. Additionally an estimate for the process covariance Σ̄, is
computed using the previous covariance matrix and process
noise matrix Q.

µ̄t = Axt−1 +Bωt (8)

Σ̄t = AΣt−1A
T +Q (9)

For our model, our states are defined as x = [φ, θ, ψ]T and
the input is set as the gyro measurements. With this the linear
process A is set to the identity matrix and the system input
matrix B is set to I3∗dt . The process noise covariance matrix
is initialized to 0.5 ∗ I3

After the process model, the measurement model is com-
puted to get to get an updated covariance and model estimate.
The system measurement zt is computed from the accelerom-
eter data using the equations below.

φ = tan−1(ay/
√
a2
x + a2

z)

θ = −tan−1(ax/
√
a2
y + a2

z)

ψ = tan−1(
√
a2
x + a2

y/az)

(10)

Due to the output from the computed measurement the
system measurement matrix C is computed as the identity
matrix I3. The measurement noise matrix, R, was initialized
to .5 ∗ I3. With the computed measurement, the Kalman gain
can be computed from the estimated covariance matrix, system

measurement matrix, and the measurement noise matrix using
the following equation.

Kt = Σ̄tC
T (CΣ̄tC

T +R)−1 (11)

This is used to estimate the posterior µt and update the
covariance matrix Σt.

µt = µ̄t +Kt(zt − Cµ̄t) (12)

Σt = Σ̄t −KtCΣ̄t (13)

During each step the gyro measurements are used as the
inputs to the process model to get a predicted state. Then,
using the measured state calculated from the acceleration
measurements, the Kalman gain is computed. This determines
the weight the filter puts on the measured values against
the predicted values. Along with this the covariance matrix
represents the confidence in the process model versus the
measurement model.

For the data set the process and measurement noise matrix
were initialized as follows.

Q =

0.5 0 0
0 0.5 0
0 0 0.5

 (14)

R =

0.5 0 0
0 0.5 0
0 0 0.5

 (15)

V. UNSCENTED KALMAN FILTER

The Kalman filter generally provides good estimates of the
system attitude; however, it makes assumptions that are not
always viable for certain systems. The normal Kalman filter
assumes process models can be estimated with a linear model.
The advantage of a Unscented Kalman filter is that during
the process the estimated state and the estimated covariance
matrix are processed through the actual system dynamics. The
system is able to handle nonlinear processes as it estimates
the state and covariance through numerous sigma points run
through the system’s nonlinear processes. The filter starts by
initializing in the same way as the normal Kalman filter with
a process noise matrix Q, measurement noise matrix R and
a covariance matrix P . From here the the disturbances W , to
generate the sigma points are calculated from the covariance
and process noise matrices with the equations below where S
is the matrix square root of the equation using the Cholesky
Decomposition. For attitude estimation we have a state vector
of 7 states.

x = [qwqxqyqzωxωyωz]T (16)

This is composed of the attitude quaternion and the Euler
rotation rates. The states has 6 degrees of freedom so we use a
dimensionality n of 6. The filter initializes P to and nxn matrix
of zeros as the covariance will quickly settle to the correct
value. Additionally the sigma points were calculated using

√
n

instead of
√

2n as described in 2 to improve tracking.

S =
√
Pt−1 +Q

Wi,i+2n = columns(±
√
nS)

(17)



This results in 12 sigma points where each sigma point is
a column of the resulting matrix in both the negative and
positive case. The sigma points X can be computed using the
disturbances above. The disturbances are of dimensionality 6
so the first 3 are applied to the state orientation (measured via
quaterions) and the second 3 to the state angular rate.

(qW)i = [cos(0.5∗| ~W1:3,i|∗dt),
~W1:3,i

| ~W1:3,i|
sin(0.5∗| ~W1:3,i|∗dt)]T

(18)
(ωW)i = [W4,i,W5,i,W6,i]

T (19)

With this the actual sigma points are calculated by adding
the disturbances to the current state.

Xi =

(
qt−1qWi

ωt−1 + ωWi

)
(20)

Once the sigma points have been computed the process model
points can be computed. Each sigma point is run through the
system process model to get individual state estimates Yi. For
this system the process model propagates the attitude quater-
nion using the current rotation rates. The quaternion change
q∆ from the process model is computed in the same manner
that the sigma point quaternion disturbance was computed
however using the current angular velocity ωt−1 instead of
the quaternion disturbance W1:3,i.

Yi =

(
qt−1qWq∆

ωt−1 + ωW

)
(21)

Instead of getting the estimated covariance matrix and
estimated state through the linear process model and current
covariance matrix in the normal Kalman filter, the estimated
state and covariance is computed from the result of the sigma
points. This allows the filter to model the non-linear process
of the system.

The mean of the sigma points is calculated by iterating a
mean attitude error until a mean attitude is converged upon.
The iteration computes an initial quaternion qt as the first
sigma point. During each iteration, the error ~ei, from each
sigma point to the quaternion qt is calculated. The average
of the these error vectors are taken to get an average error ~e,
which is then transformed back into a quaternion and applied
to qt to move it in the direction of the true mean attitude. This
loop is iterated until the mean error has decreased below an
acceptable threshold. This iteration process is described below.

µ̄ =

[
q̄
ω̄

]
(22)

With the mean state µ̄ from the sigma points the covariance
estimate P̄ , and the mean centered sigma disturbancesW ′i can
be computed.

W ′i =
[
Xi − x̄

]
=

[
qX (q̄)−1

ωX − ω̄

]
(23)

W ′i is computed by multiplying the inverse of the mean
attitude quaternion to the quaternion portions of the sigma

Data: Yi
Result: Ȳ
qt = qY,0
ω̄ = 1

2n

∑
ωi

while not looped for max iterations do
qinv = q−1

t

for qi in Yi do
~ei = qiqinv

end
~e = 1

2n

∑
~ei

qt = ~eqt
if ~e < threshold then

q̄ = qt
end

end
Algorithm 1: Mean Sigma Point Calculation

points and subtracting the mean angular velocity from the
angular velocity portion of the sigma points.

The covariance matrix can be computed with the mean
centered disturbances W ′i now that they are centered around
the mean sigma point.

P̄ =
1

2n

∑
W ′iW ′i

T (24)

With the estimate and covariance estimates computed the
process model propagation is complete. The measurement
model starts by calculating the estimated system measurements
z̄i from the sigma points. g is the gravity frame represented
through quaternions.

z̄i =

[
Y−1
q gYq
Yω

]
i

(25)

The mean of these computed quaternions and angular ve-
locities are computed into a mean measurement estimate Z̄ .

Z̄ =
1

2n

∑
z̄i (26)

The covariance of the measurement estimates Pzz is also
computed from the measurement estimates.

Pzz =
1

2n

∑
[Z̄ − z̄i][Z̄ − z̄i]T (27)

From the measurement covariance the innovation covariance
can be calculated as the sum of the measurement covariance
and the measurement noise matrix.

Pvv = Pzz +R (28)

In order to get the Kalman gain to update the state the cross
correlation matrix Pxz must be computed.

Pxz =
1

2n

∑
[W ′i][Z̄ − z̄i]T (29)

With the updated covariance matrix and innovation covari-
ance matrix the Kalman gain K can be computed.

K = PxzP
−1
vv (30)



With the Kalman gain computed the state estimate and the
state covariance can be updated. The new covariance is the
estimated covariance minus the product of the Kalman gain,
innovation covariance matrix, and Kalman gain transpose. The
state is calculated as the previous state plus the product of
the Kalman gain and the difference between the measurement
readings ẑ and the estimated measurement readings.

Pt = P̂t−1 −KPvvK
T (31)

x̂t = x̂t−1 +K(ẑ − Z̄) (32)

For the data set the process and measurement noise matrix
were initialized as follows.

Q =


105 0 0 0 0 0
0 105 0 0 0 0
0 0 105 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5

 (33)

R =


11.2 0 0 0 0 0

0 11.2 0 0 0 0
0 0 11.2 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.1

 (34)

VI. RESULTS

A. Training Data Sets

Euler angles for the training data sets are shown in Figures
1, 2, 3, 4, 5, and 6.

B. Test Data Sets

Euler angles for the real test data sets are shown in Figures
7, 8, 9, and 10.

VII. VIDEOS

We have uploaded our video results to YouTube, and provide
links to each test set here. Note that the ‘real’ sets will only
have 4 plots.

A. Training Data Videos

1) https://youtu.be/VM1YS0bOKDg
2) https://youtu.be/P8SSOgIim8U
3) https://youtu.be/1cOpraF sxI
4) https://youtu.be/V6YbjHI7Ep4
5) https://youtu.be/EjkcpqC0IRo
6) https://youtu.be/FQUTHbK2JIQ

B. Real Data Videos

1) https://youtu.be/3Qpu9Kg0Y2s
2) https://youtu.be/jKs2lmPqCck
3) https://youtu.be/VG5ZU0MloU
4) https://youtu.be/PkIjVZsywTw

VIII. IMPORTANT LESSONS LEARNED

1) Gain sensitivity: Through implementing the Unscented
Kalman filter we found the output to be extremely dependent
on the choice of noise matrices. The filter would only give a
remotely reasonable estimate for very narrow band of gains.
In particular the process noise matrix Q would result wildly
different outputs for small changes. Initially during debugging
it was difficult to determine if errors in the output were
attributed to incorrect implementation of the filter or incorrect
gains. In the end, tuning of gains took comparable time to the
actual creation of the filter.

2) Training on multiple data sets: As a result of the high
degree of tuning gains described in the previous section, the
final tune of the filter gave better results for some sets over
others. This resulted to an ’overtuning’ for certain scenarios,
which had to be tuned back to allow for superior overall
performance.

3) Use of numpy Libraries: Tracking and resolving dif-
ferences in notation between the Kraft paper 2 and other
sources proved to be a challenge, especially when debugging.
However, taking the time to understand each equation lead to
some pretty handy discoveries in numpy. Most relevant was
that the np.cov function can calculate the biased covariance
of state vectors and sigma points without us having to deal
with transforming between quaternions and Euler angles. It
also allowed us to remove quite a bit of custom, very buggy
code.

IX. CONCLUSION

It is clear from the test and actual data presented here
that this implementation of the UKF filter outperformed both
the standard Kalman filter and the Madgwick filter. This is
primarily apparent in the test data sets where the UKF can
be seen to follow the Vicon data most closely. Interestingly,
there are small number of cases where none of the filters
implemented here adequately align with the Vicon data. One
such case can be seen in the Yaw values for test case 4, where
none of the filters appear to track the true orientation of the
platform particularly well.

Significantly, it can be seen that even in cases where the
UKF orientation does not align with the Vicon data for a
period of time, that the filter will quickly ’recover’ from these
erroneous values and resume tracking the Vicon data.

ACKNOWLEDGMENT

The authors would like to thank the professors for this
course, Nitin J. Sanket and Chahat Deep Singh, as well as
Dr. Inderjit Chopra.

REFERENCES

[1] S. O. H. Madgwick, An efficient orientation filter for inertial and
inertial/magnetic sensor arrays. University of Bristol Rep., 2010

[2] Kraft, Edgar. ”A quaternion-based unscented Kalman filter for orientation
tracking.” Proceedings of the Sixth International Conference of Informa-
tion Fusion. Vol. 1. 2003.

https://youtu.be/VM1YS0bOKDg
https://youtu.be/P8SSOgIim8U
https://youtu.be/1cOpra_FsxI
https://youtu.be/V6YbjHI7Ep4
https://youtu.be/EjkcpqC0IRo
https://youtu.be/FQUTHbK2JIQ
https://youtu.be/3Qpu9Kg0Y2s
https://youtu.be/jKs2lmPqCck
https://youtu.be/_VG5ZU0MloU
https://youtu.be/PkIjVZsywTw


Fig. 1. Euler angles for training data set 1.



Fig. 2. Euler angles for training data set 2.



Fig. 3. Euler angles for training data set 3.



Fig. 4. Euler angles for training data set 4.



Fig. 5. Euler angles for training data set 5.



Fig. 6. Euler angles for training data set 6.



Fig. 7. Euler angles for real data set 1.



Fig. 8. Euler angles for real data set 2.



Fig. 9. Euler angles for real data set 3.



Fig. 10. Euler angles for real data set 4.


	Introduction
	Scaling and Removing Bias
	Accelerometer
	Gyroscope

	Interpreting the data
	Kalman Filter
	Unscented Kalman Filter
	Results
	Training Data Sets
	Test Data Sets

	Videos
	Training Data Videos
	Real Data Videos

	Important Lessons Learned
	Gain sensitivity
	Training on multiple data sets
	Use of numpy Libraries


	Conclusion
	References

