
ENAE788M Assignment 3 - Trajectory Following on the PRG Husky

Estefany Carrillo, Mohamed Khalid M, and Sharan Nayak

I. INTRODUCTION

In this project, we implement code to have the PRG
Husky follow three trajectories: helix, diamond and staircase.
For each of these trajectories, waypoints for positions or
velocities are generated. This will be described in detail in
section II. We implement an open loop controller by sending
these waypoints to the Husky as control commands and
perform tunning of the control gains in the inner control
loop to improve trajectory tracking.

II. WAYPOINTS GENERATION

A. HELIX TRAJECTORY

For this trajectory, we are given the equations for generat-
ing x, y and z points. Since these equations are differentiable,
we decided to compute the velocities in x, y and z from the
given equations for a specific range of time as follows:

ẋ = ωr cosωt (1)

ẏ = −ωr sinωt (2)

ż = ωc =
h

2π
, (3)

where r is the radius of the helix, set to 1m, 2πc is a
constant giving the vertical separation of the helix’s loops,
set to 1m, and ω is the constant angular velocity, set to 1
rad/s. For implementation, we set the time step at which
we generate trajectory points to π

4 secs. We implemented
the trajectory in two ways, generating position commands
as well as velocity commands. In Fig. 1, we show a plot
of this trajectory parameterized with time step = 0.1 sec.
Even though we tried running experiments with this finer
parameterization with time step of 0.1 secs, we did not obtain
a good tracking of the trajectory, so we just set the time step
to π

4 secs.

B. DIAMOND TRAJECTORY

For this trajectory, we implemented the control in two
ways. First, we sent the waypoints forming the diamond
pattern as position commands. This resulted in a noticeable
delay in the quadrotor moving from one point to the next.
We then tried fitting a cubic spline through the specified
points using the function interp1d from the scipy.interpolate
library available in python. Once the cubic spline fitting
going through all the points was obtained, we were able to
generate a trajectory time-parameterized at time step = 0.2
sec. In Fig. 2, we show a plot of this trajectory parameterized
with time step = 0.2 sec.

Even though we tried running experiments by sending the
points generated from the spline, the quadrotor was not able

to track the trajectory in terms of the z-direction as well as
sending the 5 points of the diamond pattern.

Fig. 1: Helix Trajectory

Fig. 2: Diamond trajectory (red), spline fitting for diamond
trajectory (gray)

C. STAIRCASE TRAJECTORY

For this trajectory, we implemented two staircases. The
fist staircase was generated based off a staircase constructed
in the 2D x-z plane with initial position at (0, 0) and final
position at (x, z), where x = c, z = c and c = 3

√
3.0√
2.0

which
implies y is set to 0. Then, we rotated this staircase by 45
degrees and obtained the following set of points:



P = {(0, 0, 0), (0, 0, c
4
), (

c

4
√
2
,
c

4
√
2
,
c

4
),

(
c

4
√
2
,
c

4
√
2
,
c

2
), (

c

2
√
2
,
c

2
√
2
,
c

2
),

(
c

2
√
2
,
c

2
√
2
,
3c

4
), (

3c

8
√
2
,

3c

8
√
2
,
3c

4
), (

3c

8
√
2
,

3c

8
√
2
, c),

(
c√
2
,
c√
2
, c)} (4)

The second staircase was generated by solving the follow-
ing nonlinear equations for each point not in the diagonal
corresponding to P1, P3, P5, P7. Points in the diagonal
were easily computed by increasing the initial point P0 =
(0, 0, 0) by 3/4 to produce the next point in the diagonal
until reaching the final point P8 = (3, 3, 3). To compute the
coordinates of P1 (not a point on the diagonal), the following
equations were used:

((x− P0x)
2 + (y − P0y)

2 + (y − P0y)
2) = d2 (5)

((x− P2x

2
)2 + (y − P2y

2
)2 + (y − P2z

2
)2) = h2 (6)

((x− P2x)
2 + (y − P2y)

2 + (y − P2z)
2) = d2, (7)

where d is the length between P0 and P1, calculated as
d = 3

√
3

8 cos 45 and h is the length from the midpoint between
P0 and P2 on the diagonal and the point not on the diagonal,
P1, calculated as h = d sin 45. In Fig. 3, we show a plot of
this trajectory parameterized with time step = 0.1 sec.

Fig. 3: Staircase Pattern

From our experiments, we obtained better tracking for the
first staircase and decided to use that for demonstration and
analysis.

D. TUNING OF PARAMETERS

In order to test the accuracy of motion of the quadrotor
when sending position commands. Our first experiment con-
sisted in setting linear.x to 1 in order to see how much the
quadrotor translated forward. We performed this experiment
a total of 15 trials and computed the average distance

obtained. In Fig. 4, we show the step of obtaining the
measurements of translation.

Fig. 4: Measurement step during calibration experiment.

In terms of the inner controller gains, we performed some
testing by i) changing the default KP gain set at 0.8 to 0.9
and ii) changing the default KI gain set at 0.0 to 0.1. For the
first test, we observed that the steady state error increased
and for the second test there was more drifting and larger
deviation from the trajectory. Given these observations, we
decided to keep the default gains in place.

In terms of the outer loop controller, we modified and
tuned 4 parameters. This included the delay between way-
points, the rate at which each delta position command was
sent multiple times, the amount of time for which each
command was sent (timeout) and the scaling for the X, Y,
Z delta positions. In reference to the delay command, when
the delay was decreased, a smoother trajectory was obtained,
however, when the delay was reduced to about below 0.1,
the quadrotor did not track the trajectory as well. The rate
command caused the quadrotor to increase its speed. The
timeout command caused the trajectory between waypoints
to be executed over a longer period of time. Increasing the
scaling caused more distance to be covered along the X, Y
or Z directions. These parameters were tuned empirically to
get the helix, staircase and diamond trajectories as close as
possible to the ideal trajectories.

E. PLOTTING IN RVIZ

We used Rviz to plot real-time waypoint positions of the
quadrotor. The ROS TF transform containing the position
coordinates were broadcasted from our program to Rviz
every 0.1 sec. Whenever our program finished sending a
waypoint to the quadrotor, the position coordinates were
updated for broadcasting to Rviz. Fig. 5 shows the world
and quadrotor coordinate systems being displayed in Rviz.

F. IMPLEMENTATION AND RESULTS

To achieve a soft landing and as a result of multiple crashes
resulting in the legs getting broken, we modified the landing



Fig. 5: World and quad coordinate systems displayed in Rviz

gear of the quadrotor by replacing the legs with cushions
made of foam. We also attached a substitute board on top
of the quadrotor to obtain additional weight. We did this
to account for the weight of the upboard during tuning of
the control commands without actually using the upboard
to avoid potential damage to it. Fig. 5 shows the current
hardware configuration of the quadrotor used for testing.

Fig. 6: Hardware modification of drone for soft landing.

The following plots shown in Fig. 7 through Fig. 12
correspond to the resulting trajectories obtained from the
Vicon data and the actual waypoints sent to the quadrotor
during runtime. From these plots, it can be observed that
the quadrotor is better at tracking the helix trajectory than
the other two given trajectories, however, there is a notice-
able difference between the ideal trajectory and the actual
trajectory for all given patterns. This shows the limitations
of using an open loop controller scheme.

Fig. 7: 3D view of helix trajectory resulting from experiment
vs ideal trajectory.

Fig. 8: 3D view of staircase trajectory resulting from
experiment vs ideal trajectory.

Fig. 9: 3D view of diamond trajectory resulting from exper-
iment vs ideal trajectory.



1

-0.5 0 0.5 1 1.5

x (m)

-1

-0.5

0

0.5
y

 (
m

)

-0.5 0 0.5 1 1.5

x (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

m
)

Orthogonal view of helical trajectory

-1 -0.5 0 0.5

y (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

m
)

Actual trajectory

Desired trajectory

Figure 1: Data Set 1
Fig. 10: 2D view of helix trajectory resulting from experiment vs ideal trajectory in the y-x, z-x and z-y planes.

1

-2 -1.5 -1 -0.5 0

x (m)

-0.5

0

0.5

1

1.5

2

2.5

3

y
 (

m
)

-2 -1.5 -1 -0.5 0

x (m)

0

0.5

1

1.5

2

2.5

3

3.5

z
 (

m
)

Orthogonal view of staircase trajectory

0 1 2 3

y (m)

0

0.5

1

1.5

2

2.5

3

3.5

z
 (

m
)

Actual trajectory

Desired trajectory

Figure 1: Data Set 1
Fig. 11: 2D view of staircase trajectory resulting from
experiment vs ideal trajectory in the y-x, z-x and z-y planes.

1

-1 -0.5 0 0.5 1

x (m)

-0.5

0

0.5

1

1.5

2

y
 (

m
)

-1 -0.5 0 0.5 1

x (m)

0

0.5

1

1.5

2

2.5

3

z
 (

m
)

Orthogonal view of diamond trajectory

-0.5 0 0.5 1 1.5 2

y (m)

0

0.5

1

1.5

2

2.5

3

z
 (

m
)

Actual trajectory

Desired trajectory

Figure 1: Data Set 1
Fig. 12: 2D view of diamond trajectory resulting from
experiment vs ideal trajectory in the y-x, z-x and z-y planes.


