
ENAE788M Project 2
Team Bouncing Rainbow Zebras

Erik Holum
Graduate Student

University of Maryland
Email: eholum@gmail.com

Edward Carney
Graduate Student

University of Maryland
Email: carneyedwardj@gmail.com

Derek Thompson
Graduate Student

University of Maryland
Email: derekbt@yahoo.com

Abstract—In this paper, we discuss the implementation of
control software for following three pre-specified trajectories
using the Bebop drone. We provide an overview of the control
software written the Robot Operating System (ROS). Discuss the
details of the PID position controller and gain tuning, using both
a simulated quadrotor as well as the actual Bebop. Then finally
present experimental results for following the trajectories using
physical hardware.

X = x,y,z pose
V = Current velocity
Xdes = Desired position
Xcurrent = Current position
Vdes = Desired velocity
Verr = Error in velocity
Vmin/max = Max and min velocities
Tproj = Projected time step
Avel = Acceleration
e = Error vector
Kp = Proportional gain
Kd = Derivative gain
Ki = Integral gain

I. INTRODUCTION

In this project, we utilized existing open-source frameworks
and tool sets to develop and implement a software architecture
capable of issuing trajectories to a Bebop drone and command-
ing the drone to follow these trajectories autonomously. Initial
development was done in a simulation environment to verify
software logic and process flow, followed by full hardware
testing. This work culminated in a live test event where
the drone was required to follow three different trajectories
autonomously; a video capture system was used to obtain
’truth’ data for the drone’s performance to compare to the
desired trajectories.

II. IMPLEMENTATION DETAILS

We implemented all code in Python using the ROS frame-
work [1]. In order to test our software setup without the Bebop,
we made extensive use of a Gazebo simulation environment to
verify software design and implementation prior to full hard-
ware testing. This was done via the open-source tum simulator
available from the main ROS website [2] configured to run
on Ubuntu 16.04. Although this simulation is designed for the

Ardone quadcopter and therefore would require different gains
than the actual PID controller that would be implemented for
our Bebop, the framework still allowed us to test the design
and implementation of our controller, waypoint publisher, and
supporting modules in ROS without the additional constraints
of hardware testing.

The first step was to write a communications class for
reading/writing commands from either the bebop autonomy
ROS package [3]. We wrote a DroneComms class that
allowed us common access to the takeoff, land, command,
and odometry readings from both the Tum simulation and the
Bebop.

Our primary position control node is the main navigation,
which handles wrapping the DroneComms object in a skele-
ton code that enables position control of the quadrotor. The
benefit is the precise details of both the controller and the
underlying drone comms are not necessary for the main loop
in main navigation. Desired positions are read from the
/main navigation/des pose ROS topic, and the resulting
command velocity are published to the active quadrotor.

In order to execute the specified trajectories, we wrote the
waypoint publisher node, which reads pre-canned trajectory
files, then sends desired positions to the main navigation
node for execution. We used a simple Euclidean error metric
to determine when the quadrotor had reached the desired pose,
rcmd, namely

|e| = |X −Xdes| ≤ 0.1 (1)

Once this condition is reached, the waypoint publisher
updates rcmd to the next point in the trajectory file.

Finally, especially when first starting testing our code with
the Bebop, we often found it necessary to halt the drone
without it crashing into a net or the ground. We imple-
mented a ground control node, which leverages the PyGame
(pygame.org) Python module and an xbox control to provide
manual control of the Bebop. By flipping a condition in the
main navigation node, manual control is instantly passed
to the xbox controller to allow the driver to safely land the
quadrotor.

Each of these nodes and the relevant topics between them
is presented in figure 1.

https://www.pygame.org

Fig. 1. Nodes and relevant ROS topics between them for controlling the Bebop. RViz and other tools not included.

III. CONTROLLER DESIGN

A. PID Controller Design

In our initial implementation we used PID controllers for
all three axis of the positional controller. After defining a
point in space the decoupled X, Y, and Z controllers would
calculate a output which would be translated to the vehicle
frame and executed. Using the dynamically re configurable
ROS parameters we were able to tune the drone to a state
where it could complete the course but it would take a while.
The control for the yaw and altitude were already very damped
systems so a PID controller, or specifically a PD controller,
worked very well with these controllers. The lateral movement
however, was not very damped so we had to increase the
derivative terms very high and turn the proportional very low
to get a trajectory that did not consistently overshoot the
desired point.

B. Gains Tuning

The Dynamic Reconfigure ROS package
(wiki.ros.org/dynamic reconfigure) provides a mechanism for
modifying a ROS node’s internal parameters during run time.
The appeal in integrating this with our PID controllers was
immediately obvious, since we were able to change Kp, Kd,
and Ki while the Bebop was airborne.

Moreover, by using rqt as specified in the tutorials, we
were able to use a GUI for both changing the gains, and
to issue new desired waypoints in the world frame during
flight. The combination of these two features allowed us to
set gain values, issue positional commands, observe the drone
response, and update the gain values based on the resultant
behavior. We continued to iterate through this tuning process
to converge on feasible gain values.

Visualization of the tuning process is provided in figure 3.

C. Velocity Controller

As we were not able to accurately control the position
of the drone through a positional PID controller we decided
we needed to implement a velocity controller on the lateral
control. To implement a velocity controller we used a sort of
receding horizons approach. The controller defines a desired
velocity Vdes, curve given by the equation below.

Vdes = min(max(Avel(Xdes −Xcurrent),−Vmax), Vmax)
(2)

The slope of the velocity with regards to position is defined
by the velocity slope term Avel and a absolute maximum
velocity of Vmax. At each call back the controller calculates
the estimated position a time step Tproj in to the future,
Xproj , and the desired velocity at this point (Vdes)proj . With
the desired velocity the time step Tproj into the future, a
velocity error can be calculated and a subsequent commanded
acceleration required over the time step to achieve the desired
velocity.

Verr = (Vdes)proj − Vcurrent (3)

Acmd =
Verr
Tproj

(4)

Knowing that the drone operates in an altitude hold mode
the commands to the drone can then be calculated from the
resulting lateral accelerations from a given roll/pitch input.

command = (arctan(Acmd/9.81) ∗ 180/π)/40 (5)

The lateral controllers work in the global X and Y directions
and the commands are rotated to the vehicle frame before
being sent to the drone.

IV. RVIZ DISPLAY

In order to aid development of the controller the vehicle,
target, and commands were displayed. The target position was

http://wiki.ros.org/dynamic_reconfigure

Fig. 2. Tuning PID gains using the rqt dynamic reconfigure package.

displayed as a red ellipsoidal sphere as it was moved around
the environment. Another very helpful feature was to plot the
navigation commands in the vehicle frame. The commands
are projected from the vehicle displaying the controller output
with regards to the vehicle.

V. RESULTS

Results for the three tested trajectories are presented be-
low. Vicon data captured during testing are compared to the
commanded trajectories sent to the Bebop. It is apparent from
these plots that while the general trajectory is maintained for
each scenario the odometry has suffered from some degree
of bias in each case. It should also be noted that the Vicon
system could not capture the entirety of trajectories 2 and 3
due to the height the Bebop was required to fly to.

A. Trajectory 1 (Helix)

Results for trajectory 1 are presented in Figures 5 - 7.

B. Trajectory 2 (Diamond)

Results for trajectory 2 are presented in Figures 9 - 11.

C. Trajectory 3 (Staircase)

Results for trajectory 3 are presented in Figures 13 - 15.

VI. VIDEOS

Videos of the resultant test flights are available at:

1) https://www.youtube.com/watch?v=2UQTmHEkgWY
2) https://youtu.be/Cybi 7t54Sw
3) https://www.youtube.com/watch?v=LX-WfwG-pRo

Note: Apologies for trajectory 2, the phone camera crashed
as soon as the waypoint navigation started. The provided video
is from testing.

VII. IMPORTANT LESSONS LEARNED

A. Simple PID Position is Insufficient

Our first attempt at writing a stable controller was to use
basic PID controllers for each of the x, y, z components of
rcmd. Namely, given an x error measurement, ex = rx −
rcmd,x, we have,

ux = Kp,xex +Ki,x(e∆t) +Kd,x
∆e

∆t
.

This type of controller worked extremely well for vertical
movement. But for any kind of translation in the x − y-
plane, there was basically no gains that we could find that
would allow for any kind of reasonable settling time. In most
cases, the result was unstable, and the drone would oscillate
continuously around rcmd.

https://www.youtube.com/watch?v=2UQTmHEkgWY
https://youtu.be/Cybi_7t54Sw
https://www.youtube.com/watch?v=LX-WfwG-pRo

Fig. 3. Rviz display output

Fig. 4. Trajectory 1 (XY): Vicon vs Commanded Trajectory

Fig. 5. Trajectory 1 (YZ): Vicon vs Commanded Trajectory

B. Simulation is not Reality

This project taught us a great deal about the utility of
an available simulation environment. The ability to design
against this simulation (which closely mimicked the node
structure that existed for the open-source bebop autonomy

Fig. 6. Trajectory 1 (XZ): Vicon vs Commanded Trajectory

Fig. 7. Trajectory 1 (3D): Vicon vs Commanded Trajectory

ROS package) allowed us much more freedom to experiment
with design choices and effectively gave us more development
time by eliminating the overhead required to setup and run the
test frameworks on hardware. Indeed, once we began hardware
testing there were few changes that needed to be made to the

Fig. 8. Trajectory 2 (XY): Vicon vs Commanded Trajectory

Fig. 9. Trajectory 2 (YZ): Vicon vs Commanded Trajectory

Fig. 10. Trajectory 2 (XZ): Vicon vs Commanded Trajectory

Fig. 11. Trajectory 2 (3D): Vicon vs Commanded Trajectory

core software architecture and the solution functioned mostly
as designed, increasing the amount of time available to us for
running through the test trajectories and tuning the gain values.

However, one thing that came back to haunt us was that
the simulated Ar Drone published its odometry at a much
higher rate than the Bebop (approximate 25 Hz vs 5 Hz). As
such, our initial PID position controller performed perfectly
in simulation, but when applying it to the Bebop the slower

Fig. 12. Trajectory 3 (XY): Vicon vs Commanded Trajectory

Fig. 13. Trajectory 3 (YZ): Vicon vs Commanded Trajectory

Fig. 14. Trajectory 3 (XZ): Vicon vs Commanded Trajectory

Fig. 15. Trajectory 3 (3D): Vicon vs Commanded Trajectory

odometry updates prevented the basic PID from the previous
subsection from converging.

C. ROS Configuration is Cumbersome

We ran into innumerable issues in getting our ROS catkin
workspace functional. For example, in order to use Dynamic
Reconfigure we had to add the cfg, node prefixes, and correct
Catkin commands all in exactly the right locations and spec-

ifications in order to get it to run. Even when we finally did
get it operational, we found that we were unable to set default
values on a per-PID basis, so then had to go back and figure
out how to load default values into the ROS param server
using a .yaml file. This was just one example of many, but the
important takeaway here is that we should allot ample time for
debugging ROS configuration issues, since for this project we
probably spent more time on that than actually implemented
control code.

D. The Floor Matters

The majority of our testing was done in an area with
a solid color flooring with taped markers. In general, we
found very high correlation between the down-facing camera’s
odometry readings and the canned trajectories. However, the
actual carpeting in the testing facility proved to make those
readings significantly more noisy. Particularly near the edges
of the mat where the patterns dropped away. It is evident in
the Helix trajectory that the odometer was drifting significantly
towards the edges of the test space.

E. Manual Control

We were able to implement manual control over the drone
through the pygame libraries and an Xbox controller. This
allowed us to take control over the drone at any moment and
save it potentially crashing. There were many times during
testing in which manually flying the drone back to safety
prevented a crash. Some situations where sending a land
command rather then flying the drone to safety, would have
resulted in a crash. From the controller we could manually
move the drone, takeoff, land, and switch between manual
and autonomous states.

VIII. CONCLUSION

Ultimately we were able to get the Bebop to follow the
specified trajectories with reasonably high fidelity. In that
sense, we consider ourselves to be successful. Reflecting on
our controllers, code, and waypoint navigator however, we see
many opportunities for improvement.

Most notably is simply how sluggish the Bebop is at moving
from target to target. Given time constraints we were not able
to implement any kind of B-spline or trajectory smoother for
moving through points. So currently we basically hit 0 velocity
each time we hit a waypoint. We would like to implement a
different kind of controller/trajectory parameterization mech-
anism that allows for smooth movements through trajectory
points.

Looking forward to the next task however, we note just how
small the opening in the gates are. In order to ensure a clean
pass through the gate, we will have to ensure that whatever
controller we use can follow a trajectory with basically 0
overshoot. Ensuring that our system is critically damped will
be necessary for successfully accomplishing the next task, so
perhaps it will be better to focus our efforts there.

ACKNOWLEDGMENT

The authors would like to thank the professors for this
course, Nitin J. Sanket and Chahat Deep Singh, as well as
Dr. Inderjit Chopra.

REFERENCES

[1] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009.

[2] H. Huang and u. Sturm, “Tum simulator.” [Online]. Available:
http://wiki.ros.org/tum simulator

[3] “bebop autonomy - ros driver for parrot bebop drone.” [Online].
Available: https://bebop-autonomy.readthedocs.io/en/latest/index.html

http://wiki.ros.org/tum_simulator
https://bebop-autonomy.readthedocs.io/en/latest/index.html

	Introduction
	Implementation Details
	Controller Design
	PID Controller Design
	Gains Tuning
	Velocity Controller

	RVIZ Display
	Results
	Trajectory 1 (Helix)
	Trajectory 2 (Diamond)
	Trajectory 3 (Staircase)

	Videos
	Important Lessons Learned
	Simple PID Position is Insufficient
	Simulation is not Reality
	ROS Configuration is Cumbersome
	The Floor Matters
	Manual Control

	Conclusion
	References

