
Trajectory Following on the PRG Husky
Mrinalgouda Patil

Alfred Gessow Center of Excellence
University of Maryland

College Park, Maryland 20742
Email: mpcsdspa@gmail.com

Curtis Merrill
Alfred Gessow Center of Excellence

University of Maryland
College Park, Maryland 20742

Email: curtism@umd.edu

Ravi Lumba
Alfred Gessow Center of Excellence

University of Maryland
College Park, Maryland 20742

Email: rlumba@umd.edu

Abstract—This project presents a simple, open loop approach
to trajectory following on the PRG Husky. First, a simple cali-
bration was done to relate user commands to drone movements.
Two different trajectories were created - one for speed and one
for accuracy, and the results were compared.

I. INTRODUCTION/PROBLEM STATEMENT

The goal of this project was to implement several trajecto-
ries on the PRG Husky.

II. CALIBRATING THE HUSKY

Even though we chose to use open loop control, we still
needed to calibrate the physical response of the PRG Husky
to a given input. This was done manually using the following
approach.

A. Calibrate Single Step

First, we calibrated one step at a time. We would takeoff,
give a single input in x or y, and then land. We noted that the
input would saturate at 1, so we would give an input of 1 in
either x or y. In other words, giving an input of 1, 10, or 100
would all result in the same physical movement. We repeated
this process for ± 1 in both x and y 10 times each. For z,
it was a little more difficult. We used our phone cameras to
take pictures of the drone before and after climbing with a
very distinguishable background. This allowed us to perform
the test, and then measure the height change based on the
picture. This process was again repeated 10 times. Based on
these results, we found the conversion factor from input to
output for our quadcopter.

B. Calibrate Multiple Steps

One thing we noticed when doing the single step calibration
was that there was some drift when the quadcopter stopped.
We believed this was because when the quadcopter moved
forward and attempted to stop, it would tilt backwards and
overcompensate. Our trajectories would not be single inputs
(that would lead to choppy flight), but rather a publisher
giving inputs at a certain rate.

The first step was developing a publisher and testing what
rate worked best for our quadcopter. We found there was
a tradeoff between the rate and the distance that the quad
would move for a fixed input. If the rate was too high, the

same input would have very little output. However, if the
rate was too slow, we had a very choppy flight. After testing
several different rates, we chose a modest publish rate of 5 Hz.

Next, we tuned a straight line in x, y, and z using a method
similar to the single step. This time however, we published
the commands at 5 Hz in such a way that it should have been
going one meter. We initially used the scale factor obtained
from the single step. This worked decently well, but we were
able to run several tests in each direction to fine tune it.

III. TRAJECTORY 1: HELIX

To create the helix, the first step was to discretize a circle.
Our inputs were the size of the circle, the time we wanted
to complete the run in, and finally a scale factor for speed.
This scale factor started as the one obtained above and was a
tuning parameter to be changed.

At every position at the circle, the velocity in the xy plane
was computed as a sine/cosine component.

Out of the three trajectories, the Helix was the most difficult
to do using open loop control. One reason we realized is
that without some closed loop, we had some drift occurring
throughout the circle. We attributed this to the momentum of
the quadcopter, but mostly due to the quad being not properly
tuned.

To fix the problem of drift, we originally added in a 1
second hover after doing a quarter of the circle. Then to
reduce time, we were able to reduce these pauses by changing
the velocities throughout the circle. For example, when the x
velocity changes from signs, the y velocity stays the same
(positive or negative). We found that if we reduce the y
velocity slightly at this point, it helps reduce the drift in the
y direction. The same thing was done for the x direction

IV. TRAJECTORY 2: 3D DIAMOND

For the 3D diamond, we started by creating a slow
trajectory that moved point to point with a time delay
between each leg. This allowed us verify that each leg was
correct (this was done by taking pictures in the xz and yz
planes and measuring).

Next, we took the pauses out, and the total trajectory still
took a long time, however it was very accurate. We were
able to increase the speed by increasing the size of each
step. This was done by keeping the publishing rate at 5 Hz
but increasing the size traveled each step. We were able to
reduce the time by about 50 percent. However, this came at
the expense of accuracy, as our turns became more rounded
and less sharp. We especially had issues between legs 1 and
2 and legs 2 and 3. The y and z direction reverse completely
during these changes, which required extra effort to overcome
the momentum of the quad, mainly when the quad was moving
faster.

V. TRAJECTORY 3: STAIRCASE

The staircase was done in a similar way as the Diamond.
First, a very slow trajectory was created, to start with a very
accurate solution. Small pauses were located between the
steps to allow for easy calibration.

Next, the pauses were removed and the trajectory was
improved by over 50 percent by increasing the size of each
step. We didn’t encounter as many issues moving to higher
speeds compared to the 3D diamond, which we believe is
because there aren’t as many reversals in direction.

VI. RESULTS

The videos of our PRG Husky flying the given trajectories
are found in the attached folder. Below, the plots of the drone
flying each trajectory in each of the three planes are shown.
The actual drone movement, obtained using Vicon data, is
compared to the input trajectory.

For each trajectory, two different paths were created. One
was a slower run that attempted to be as accurate as possible.
The second run was much faster, which caused the accuracy
to decrease. The tradeoff between speed and accuracy is
something that must always be accounted for.

In the below plots, the red line is the Vicon data and the
blue line is the desired trajectory. The times quoted were when
we started the run to when we finished the run. We removed
the takeoff time and the hover time after takeoff and before
landing (to steady before and after the run).

A. Trajectory 1: Helix

For the Helix, we see that both the fast run and the slow
run matched the desired trajectory decently well in the XY
plane. Both had a uniform offset in the z direction (that
started about a quarter of the way through), and is visible in
the XZ and YZ planes.

1) Slow Run: The slower took 16 seconds, and matched
very well in XY.

Fig. 1. Trajectory 1 Slow - XY Plane

Fig. 2. Trajectory 1 Slow - XZ Plane

Fig. 3. Trajectory 1 Slow - YZ Plane

2) Fast Run: The fast took 13 seconds and matched in XY
well, but less so compared to the slow run.

Fig. 4. Trajectory 1

Fig. 5. Test 9 Roll

Fig. 6. Test 9 Roll

B. Trajectory 2: 3D Diamond

For the 3D diamond trajectory, the difference between the
slow and fast run is noticeable. The fast run has curved turns
due to the momentum of the quadcopter from the previous
legs. Slowing the trajectory down, we see that the quadcopter
matches the estimated path much better.

One thing we noticed when comparing the Vicon to the
desired trajectory is that we lost Vicon at certain points. And
when Vicon reappeared, it did not seem to be in the proper
location (it seemed to just be right where the Vicon lost the
signal). This was especially true for our fast run. We watched
the videos of the flights, and for the slow run, there looked
like there was a drift in y by roughly 20 cm from takeoff to
landing, and Vicon said about 40 cm. This is close enough,

so we left the data as is. However, for our fast run, we again
estimated about .2m of drift in the y direction but saw drifts
mcuh larger (1m) from Vicon. Therefore, we will start by
showing the raw data given by the Vicon. Then, we will show
plots where we adjusted the data after the Vicon lost the signal
based on the video that we took for our Fast Run.

1) Slow Run: The slow run took around 12 seconds.

Fig. 7. Trajectory 1 Slow - XY Plane

Fig. 8. Trajectory 1 Slow - XZ Plane

Fig. 9. Trajectory 1 Slow - YZ Plane

2) Fast Run: The fast run took a little over 6 seconds.

Fig. 10. Trajectory 1

Fig. 11. Test 9 Roll

Fig. 12. Test 9 Roll

C. Trajectory 2: 3D Diamond - Adjusted

These plots are the same Vicon data as above, however the
section after the Vicon lost the signal have been biased based
on our observations from the video. This was just done for
our Fast Run.

1) Fast Run: The fast run took a little over 6 seconds.

Fig. 13. Trajectory 1

Fig. 14. Test 9 Roll

Fig. 15. Test 9 Roll

D. Trajectory 3: Staircase

The Vicon data for the staircase was very inconsistent. Like
the 3D diamond there were times when the Vicon would lose
the drone. However, this occured at much greater frequency
for the staircase making the Vicon data boarderline unusable.
The 3D plots of the raw Vicon data are shown below for our
fast and slow runs.

Fig. 16. Raw Vicon Data for Slow Stair Trajectory

Fig. 17. Raw Vicon Data for Fast Stair Trajectory

As one can notice, for the slow run the Vicon captures only
one half step (the in-plane portion) as well as the landing.
The interesting thing is it only catches the second step and
not the first step. A possible reason for this could be that
the drone was started too far in the corner to be picked up
on Vicon. The top step was around the same height as the
Vicon, and might have even been slightly above the sensors,
which explain while it was not capture.

For the fast run, over one complete step was captured,
which is an improvement, but still doesn’t leave too much to
work off of.

The 3 view plots seem to indicate that we overshot our
intended altitude for the slow trajectory, but it is difficult to
draw too many conclusions from the Vicon data.

For the faster trajectory, it seems like we did not hit the
required altitude or distance. This might be because we did
not properly tune the quad for the faster speed.

1) Slow Run: The slow run took around XX seconds.

Fig. 18. Trajectory 1 Slow - XY Plane

Fig. 19. Trajectory 1 Slow - XZ Plane

Fig. 20. Trajectory 1 Slow - YZ Plane

2) Fast Run: The fast run took a little over XX seconds.

Fig. 21. Trajectory 1

Fig. 22. Test 9 Roll

Fig. 23. Test 9 Roll

VII. CONCLUSION

The main conclusion that we drew from this work was that
there will always be a tradeoff between speed and accuracy
while path planning. Despite how much the quadcopter is
tuned, at faster speeds the required change in momentum is
large, which leads to rounder turns and more deviation from
the straight line path. Although we certainly did not have our
quad perfectly tuned, we know that these are issues that cannot
be avoided.

A. Lessons Learned

One issue we encountered was that our quad’s
characteristics changed after we had one crash. This
meant that we had to go and tune our parameters again.
Another lesson we learned was that each time we took out the

quad and started flying, there might be some small differences
than the time before. We aren’t sure exactly what the cause
was (possibly using different propellers at different locations,
or some other small issue), but this taught us that we should
always do some general calibration checks every time we fly.

Another lesson that we learned was that open loop control
can work for basic trajectories, but when doing realistic time-
discretized trajectories, closed loop control is needed. For
example, using an open loop controller for the 3D diamond
and Staircase worked very reasonably well, with some tuning.
However, using open loop control for the helix required much
more tuning. If certain parameters were to change, such as the
radius or pitch, there would be much more tuning required to
be accurate. Therefore, while closed loop controllers might
take more effort in tuning up front, they are better and more
robust in the long run as more complicated trajectories can be
implemented with less effort.

REFERENCES

[1] ENAE788 Class 5 Slides
[2] Some Code taken from learnopencv.com/rotation-matrix-to-euler-angles/

