
Trajectory Controller for a Bebop Quadcopter
Ilya Semenov

University of Maryland
isemenov@umd.edu

Tim Kurtiak
University of Maryland

tkurtiak@terpmail.umd.edu

Abstract—This report presents the implementation and results
of a closed loop trajectory controller for a Parrot Bebop quad-
copter. The controller was built as an outer loop to expand upon
the Bebop’s attitude and position controller. Three trajectories,
Helix, Diamond, and Stairstep were executed.

I. PROBLEM STATEMENT

This project aims to implement an outer loop trajectory con-
troller for the Parot Bebod quadcopter using Robot Operating
System. In addition, the telemetry is visualized and compared
to the desired trajectory using VICON data plotted in RVIZ.

II. TRAJECTORY PARAMETERIZATION

In order to implement a trajectory controller, we must
first generate a feasible trajectory. Three trajectories were
considered in this project: a Diamond, a Helix, and a Staircase
described in Figure 1 2 , and 3

Figure 1. Diamond Trajectory

The diamond trajectory is parameterized using target way-
points described by the points in figure 1. The staircase
trajectory requires an angle of 45 degrees between the path
and the vector < 3, 3, 3 >, connecting several colinear points
that are along that vector as shown in 3. This requirement
along with 5 total colinear points forces the waypoints for this
trajectory. Lastly, the helix trajectory is defined continuously
in figure 2. In this implementation 1 revolution is discretized
into 10 waypoints that satisfy the equations:

Figure 2. Helix Trajectory

Figure 3. Staircase Trajectory


x = sin(t/2π)

y = cos(t/2π)

z = t

t ∈ [0, 1]

(1)

This describes one rotation of a helix of radius one and height
one.

With each trajectory represented as a series of waypoints,
these waypoints are then sent to the outer loop controller as
setpoints in order. It should be noted that all of these waypoints
are with reference to the waypoint frame, which is an inertial
frame.



III. DESIGN OF OUTER LOOP CONTROLLER

The outer loop controller must steer the quadcopter to a
desired setpoint while taking feedback from the quadcopter’s
position sensor. This is achieved through a closed loop tracker
controller based on position and velocity error.

First it must be noted that the Bebop drone assigns an
inertial frame upon being turned on, and all odometry readings
are collected relative to that frame. However, the commands
sent to the drone are in the body frame and waypoints are
described in the waypoint frame. An open loop controller can
suffice with a series of commands set purely in the body frame,
but to use odometry information as feedback a rotation must
be preformed.

The orientation of the body frame B is encoded in a unit
quaternion. Let qBI be the unit quaternion that describes
the rotation to the body frame from the inertial frame I .
Then a vector vI in the inertial frame is made into a non-
unit quaternion qvI = [0, vI ] and transformed into non-unit
quaternion qvB = [0, v̄B ] via:

qvB = qBI ⊗ qv ⊗ qBI
−1 (2)

Where ⊗ denotes a quaternion multiplication. Vector v̄B
is a representation of vI in the inertial frame. However, the
translation of the body frame needs to be taken into account
before the final vector vB is constructed.

It should be noted that qBI
−1 = qIB and the rotation of

a vector from the body frame into the inertial is the same
process as above.

Way points are described in the waypoint frame W which
is a fixed frame equal to the body frame at a user specified
time after takeoff with orientation qW I and displacement
rW I represented in the inertial frame. Let a waypoint in the
waypoint frame wW be given. The controller must first rotate
the waypoint into the inertial frame via vector rotation by
qIW , resulting in w̄I . Then the location of the waypoint in
the inertial frame is wI = w̄I + rWI .

The error vector in the inertial frame is eI = wI − rBI

where rBI is the current displacement of the body frame
origin represented in the inertial frame.

The error vector is rotated by qBI to result in eB and it
is a function of time t. Translation is taken into account pre-
rotation.

Given that the waypoint was assigned at time t = t0 then
the control command u at time t is given:

u = Kp. ∗ eB +Ki. ∗
∫ t

t0

eBdt−Kd. ∗
eB
dt

(3)

Where .∗ represents element wise multiplication and
Kp,Ki,Kd are gain vectors.

IV. IMPLEMENTATION

The implementation is structurally simple, but many tests
were carried out leading up to the final point. A python script
functions as a node with several publishers and subscribers.
A subscriber to topic bebop/odom receives odometry data and

saves it to global variables. A publisher to bebop/takeoff sends
an Empty message for the vehicle to take off. After a pause,
the odometry data is saved as a separate global variable, this
is now the basis of the waypoint frame.

A function moveto() was created that is passed waypoint
coordinates (in the waypoint frame) calculates the inertial
frame representation of the way point, and proceeds to execute
the loop culminated by equation 3. The output u is sent as a
Twist message to topic bebop/cmd vel. The components of u
are placed in the linear portion of a Twist message only, there
is no yaw in this system at this time.

The waypoints that are passed to moveto() are the only
thing that changes between scripts for different trajectories.
The gains are also subject to change.

One major challenge of this project was the lack of phys-
ical intuition regarding publishing Twist messages to the
bebop/cmd vel topic. The combination of values and time
delay post command change the behavior of the vehicle upon
execution considerably. Additionally, the responses in the
x,y,z directions are not consistent amongst themselves. These
challenges were found upon initial attempts for an open loop
controller, and where the primary driving factor for closed
loop.

Another issue that was identified late and not rectified fully
was the uncertainty in odometry data given by the vehicle.
Especially at low altitude this data would be very erroneous,
and would build up error over longer flights.

Special thanks to Abhishek for advice throughout develop-
ment and for lending a hand during the demo, Animesh for
help during the demo, and Derek Thompson for providing a
template for RVIZ.

V. RESULTS

Result videos are posted here:
helix https://youtu.be/0wlfIFKXbyQ dia-

mond https://youtu.be/e3qxK9pr8Astairhttps :
//youtu.be/D381V yEMNko

Despite the multiple crashes that occurred during the demo,
there is reason to be optimistic about the performance of the
Bebop. Notably, it tracked it’s own odometry data well.

Inspecting the staircase trajectory (trajectory 3) shown in
figure 6 one can see that the odometry data valiantly follows
the waypoints, meeting at each vertex. Some minor issues exist
when only considering the odometery, namely there is slight
overshoot in the x-y plane. This causes the trajectory as seen
by the odometry to bend out slightly from the straight vertical
segments.

The caveat here is that the vicon data does not support
the odometry readings. Examining the X-Z and Y-Z views
it is clear that the vehicle tends to drift in the X-Y plane
without accounting for it in odometry readings, This causes
the absolute distance between the ”corners” of the staircase
as measured by odometry and vicon data to increase with
time. An accumulation of error over time of this magnitude is
unacceptable for control implementation and is likely an issue
with the downward facing optical flow camera.



The odometry Z-axis readings do not exhibit this same level
of drift, which can be assumed to mean that the down facing
sonar data is more dependable than the optic flow camera data
regarding position.

Inspecting the Helix trajectory (trajectory 1) shown in
figure 4 a similar conclusion is reached. While the vehicle
odometry shows good tracking of waypoints, the odometry is
not accurate. The Z-axis odometry readings once again show
adequate correlation with vicon, however the X-Y readings
are completely off. Looking at the X-Y view it is clear that
the vicon data drifts further away from odometry with time.
Again, the vehicle does not record it’s movement in the X-
Y plane when it does indeed move. This issue was the main
cause of the first crash of this trajectory.

Finally, inspecting the Diamond trajectory the same con-
clusions can be reached. However this trajectory illustrates
one of the flaws with the algorithm that isn’t tied to faulty
odometry readings. It is clear here that the vehicle does not
follow straight line paths between nodes due to conserved
velocity upon reaching a node. If percise movement is needed
this velocity could lead to crashes between waypoints even if
odometry readings are perfect. A simple fix is implementable.
Consider the waypoint reached if the vehicle is within some
error of it in space as before, but now add a requirement for
the magnitude of velocity to also be below some error.

VI. LESSONS LEARNED

The clear lesson that vicon data reveals is that odometry
readings do not agree with real positions. In testing the vehicle
performed qualitatively better. So poor odometry could be due
to the environment, or some hardware issue. The root cause
of this should be investigated.

In terms of more directly actionable lessons, these results
show a velocity requirement would be beneficial for more
straight-line maneuvers between nodes, and there is reason
to tune X-Y gains for overshoot.

VII. CONCLUSION

Despite a poor showing at demonstrations, the data from
those tests is valuable at exposing issues that are not due to
the trajectory controller, and illustrating room for improvement
with regard to the trajectory controller itself.

REFERENCES

[1] Sebastian OH Madgwick, Andrew JL Harrison, and Ravi Vaidyanathan.
”Estimation of IMU and MARG orientation using a gradient descent
algorithm.” 2011 IEEE international conference on rehabilitation robotics.
IEEE, 2011.

[2] Edgar Kraft. ”A Quaternion-based Unscented Kalman Filter for Orien-
tation Tracking.” Sixth International Conference of Information Fusion.
IEEE, 2003.

[3] https://prgaero.github.io/2019/proj/p1a/report
[4] https://www.x-io.co.uk/res/doc/madgwick internal report.pdf
[5] http://www.stengel.mycpanel.princeton.edu/Quaternions.pdf



VIII. FIGURES

Figure 4. Trajectory 1: Helix Trajectory

Figure 5. Trajectory 2: Diamond Trajectory

Figure 6. Trajectory 3: Staircase Trajectory


	Problem Statement
	Trajectory Parameterization
	Design of Outer Loop Controller
	Implementation
	Results
	Lessons Learned
	Conclusion
	References
	Figures

