
Assignment 3a: Mini Drone Race
Abhinav Modi

Masters of Engineering in Robotics
University of Maryland, College Park

Email: abhi1625@umd.edu

Prateek Arora
Masters of Engineering in Robotics

University of Maryland, College Park
Email: pratique@terpmail.umd.edu

I. INTRODUCTION

The objective of the project is to navigate through a colored
window of known size but unknown position and orientation.
In our case the window is yellow in color. The challenge was
to detect the window in different lighting condition. Several
techniques were used for window detection to account for
orientation and illumination change. Finally, after window
detection the pose of the quadrotor with respect to the window
is computed for the purpose of navigation.

II. DATA

The data for this project was recorded manually from the
Leopard Imaging camera on the quad. The data was collected
in a rosbag file at a resolution of 800x460 at 60 fps from
various angles and in different lighting conditions. In order to
train the GMM we required prior knowledge of yellow color.
For this, we used a function similar to roipoly in MATLAB
created by Jörg Döpfert [1].

III. OUR APPROACH

The approach is subdivided into two parts: (1) window
detection, where the data from the camera is filtered and
Gaussian mixture model is trained on the data and (2) pose
estimation, where 6 DOF pose of quadrotor is computed with
respect to the window. Various components to the pipeline are
discussed in detail below:

A. Window Detection

Given a yellow colored window, color based segmentation
was the obvious choice. We started off with a simple range
based threshold for the yellow color. The segmentation
output for this was not very good as some pixel values on
that window didn’t lie in the defined range. This problem
is like selecting a small cuboidal subset in a cubical RGB
color space with each dimension ranging from 0-255 which
encloses all the values of yellow. This surely works in an
ideal scenario but in real world, due to introduction of noise
and different lighting conditions the desired range of values
occupies a weird volume in this 3D color space.

B. Alternative Color Spaces

To make this estimation apart from RGB other color spaces
were also tried like HSV, LA*B*. Since the camera didn’t
have auto exposure the quality of data was quite terrible, thus
the performance was similar in all the color spaces. To get an
estimate of the number of Gaussian, histogram of data samples
recorded were plotted to check the peaks in the data for each
channel.

Figure 1: Histogram of intensity values in RGB channels
respectively

C. Single Gaussian and Gaussian Mixture Models

In order to tackle illumination changes Single Gaussian and
Gaussian Mixture Models are used to predict the color of the
window and get a binary mask. Single Gaussian models the
color space perfectly for a certain illumination, but doesn’t
work well for drastic change in illumination. For account
for this, GMM are used, which was trained on the data we
collected. By observing the peaks in the histogram of pixel
intensity values we determined the number of Gaussian that
was best for our training data set. Fitting six Gaussians was
more accurate than four, but the former was much slower
to compute than the later. Finally four Gaussian GMM was
selected as it offered a good trade-off between accuracy and
speed.



Figure 2: Histogram of intensity values in HSV channels
respectively

Figure 3: Histogram of intensity values in LA*B* channels
respectively

Figure 4: Histogram of intensity values in LA*B* channels
respectively

D. Pose Estimation

After the four corners of the windows are robustly com-
puted, perspective-n-points algorithm is used to estimate the
pose of the quadrotor. Since the dimensions of the window are
known aprior, it is a trivial task to compute 6 DOP pose. The

world frame is arbitrarily chosen as the top left corner of the
window. We used opencv function “cv2.solvePnP” to perform
PnP.

Note: Camera coordinate system is as follows: positive x
points into the image, positive y points to the left of image
and positive z points upwards.

Figure 5: 3D Pose of window center w.r.t. camera

E. Control Policy
After taking off from the ground the quad survey the area

by yawing slowly. As soon as the window is detected a simple
PD control law is used to follow the trajectory of desired
waypoints. This PD loop runs until the quadrotor aligns itself
to window and is at a distance of 1 meter from the window.
After this, the quadrotor pushes forward in open-loop state.

IV. DISCUSSION AND CONCLUSION

There were a lot of problems encountered while doing
this project. First, the input images received from the camera
were of very bad quality. There was yellowish-green tint
in the whole image which made it harder to collect good
data for the color yellow as the model would sometimes
assume white backgrounds as yellow due to the tint. This was
reduced to only an extent by tweaking the bias correction
values in the camera configuration file. Further image quality
was improved using ’gamma correction’. This improved the
overall contrast and brightness of the image. We used a value
of γ = 1.5 for our purpose.

After getting an estimate of the window mask we performed
morphological operations, mainly closing to make the mask
more connected and then used hough lines with a very high
probability on this mask to get multiple lines only along the
sides of the window. Finally we approximated the window
by taking a convex hull of the predicted hough lines and
perdicted the 4 corners.

The output of the GMM was very slow and the output of
the hough lines was very noisy. The combination of these
issues aggravated the noise in the estimate of corners even
for small vibrations. The GMM inference was increased by
downsampling the image and then resizing it again for running
PnP, but still the maximum rate we could achieve was 10-12
Hz. To further reduce the noise in the estimates we created a
moving average filter which would store the corner detections
of the previous 5 frames and then used the mean of these
corners as our corner estimates for the current frame. The
output for this can be seen in the video available in the
submission folder.



REFERENCES

[1] Roipoly equivalent in python.
https://github.com/jdoepfert/roipoly.py.


