
ENAE788M Assignment 4 - Flying quadrotor through a colored window

Estefany Carrillo, Mohamed Khalid M, and Sharan Nayak

I. INTRODUCTION

In this project, we provide the ability for PRG Husky
quadrotor to fly through a colored window. We use leopard
imaging camera to get images of the colored window and
perform segmentation of the colored window using Gaussian
Mixture Model (GMM). The segmented image is passed
through a image processing pipline to generate centroid of
the gate. The calculated centroid (desired location) and the
current location is fed as input to a bang-bang controller to
generate the necessary control inputs to control the quadrotor.

II. COLOR SEGMENTATION

A. Color Segmentation Using Thresholding

We implement color thresholding by first converting the
image to HSV color. Using the function inrange, we obtain a
mask by identifying the pixel HSV values that are between
26 and 33 for the hue value, and between 0 and 255 for
the saturation and value. Then, we perform the function
bitwiseand from OpenCV on the image and the mask to
filter out the pixel values that are not within the color
range desired. We observe that this method is very simple
and fast, however, its performance degrades under darker
lighting conditions. This can be noted in Figs. 1 - 4 below
for different outputs obtained under bright and dark lighting
conditions.

Fig. 1: Test image for color thresholding under bright light
conditions.

B. Color Segmentation Using Gaussian mixture model

The color segmentation is performed using GMM using
the Expectation Maximization (EM) iterative algorithm. The
EM algorithm consists of two steps - E and M step. The E-
step is used to calculate the cluster weights αij where i is the
data point and j is the cluster index. The M-step is used to
estimate the parameters maximizing the expected posterior
log-likelihood p(Cl/x) where Cl is the given color (purple or
yellow) and x is the data vector. The iterative algorithm ends

Fig. 2: Segmented image by using color thresholding under
bright lighting conditions.

Fig. 3: Test image for color thresholding under dark lighting
conditions.

when the number of iterations exceeds the max number of
iterations (Miter) or when the norm ‖x̄c − ¯xc−1‖ < ethres
where x̄c is the mean at the current iteration and ¯xc−1 is the
mean at previous iteration and ethres is the error threshold.
The number of Gaussians K in the mixture model is chosen
to be 6. The initial weights for each of the Gaussians is
chosen to be 1

6 . The means of the Gaussians are randomly
chosen from the training set Xtrain of x. The co-variance
matrices are taken to be diagonal matrices with random
numbers between 0 and 1 on the diagonal.

The training set Xtrain is obtained by taking images
of the colored window and cropping regions of interest
corresponding to the sides of the colored window. See Fig. 10
for an example. The cropped images which are in RGB color
space are converted to HSV color space and then formed
into a long vector with each row consisting of three values
representing a pixel. The training set is run through the EM
algorithm to generate the model (means, co-variances and
weights). An image and the output of the model for this
image are shown in Fig. 11.



Fig. 4: Segmented image by using color thresholding under
dark lighting conditions.

Fig. 5: Original and cropped images

C. Color Segmentation Using Single Gaussian

We use the same method as above but set K = 1. The
segmentation is not found to be as great as that obtained
using mixture of gaussians.

III. LINE FITTING

Once we apply color segmentation to an image, we
proceed to detect the shape of the window and its centroid
using the following methods.

A. Finding closed contours

The first method consists of detecting the largest connected
component in the image and checking whether this compo-
nent is convex. Before detecting the connected components,
we apply morphological operations to erode the image by a
small amount using a matrix of ones of size 3× 3 and thus
remove noise. Then, we dilate the image by a larger amount
using a matrix of ones of size 20× 55 to fill in gaps in the
gate portion of the image and erode once more by a small
amount using a matrix of ones of size 5× 5 to decrease the
size of the connected parts.

After applying morphological operations, we apply the
function connectedComponentsWithStats to identify con-
nected components and check the area percentage of each
connected component with respect to the area of the entire
image in order to keep the largest component. This is the
component whose area percentage is above 5 percent of the
total area. We set the pixel values corresponding to the largest
connected component identified to 1 and the rest to 0. We
then convert the resulting matrix of 1’s and 0’s to an image
of color by multiplying each pixel value by 255.

In order to detect the edges of the largest connected
component, we apply the Canny edge detection algorithm

Fig. 6: Original and segmented image using GMM

Fig. 7: Original and segmented image using Single Gaussian

with a low threshold value of 100 and high threshold value of
200. Both of these values are determined empirically. From
the resulting image, we only keep edges that are above a
threshold by using the function threshold with the option
THRESHBINARY.

Then, we use findcontours and isConvex from OpenCV to
obtain convex and closed contours. Since we can get more
than 1 contour from the image, we obtain the centroid for
each convex contour and select the centroid with the smaller
y-coordinate since this corresponds to the gate as opposed to
its bottom part. The centroid of each contour can be obtained
from the function moments. In Fig. 8, the contours of the
largest connected component obtained from the test image
in Fig. 1 are shown, and in Fig. 9, the centroid computed is
shown.

Fig. 8: Contours of largest connected component obtained
from test image in Fig. 1.

B. Finding Hough Lines

In this method, we first apply dilation to the image by a
small amount using a matrix of ones of size 10× 10 to fill
in the gaps in the image from the color segmentation. Then,
we apply Canny edges detection algorithm to find the edges



Fig. 9: Centroid (shown as a green circle) computed using
contours from test image in Fig. 1.

using a lower threshold of 0 and a highes threshold of 200,
determined empirically.

The next step consists of applying the function Hough
from OpenCV to identify lines from the edges detected in the
case edges are obtained. We notice that if the segmentation
is of poor quality, Canny edges detection does not work and
therefore this method cannot return an output.

The k-means algorithm is then used in order to classify
the obtained Hough lines into horizontal and vertical lines.
We use the available function kmeans from OpenCV to
cluster lines into two groups by their angles. Once we obtain
our two groups, we then apply k-means again to separate
horizontal lines by their ρ value in order to distinguish top
horizontal lines from bottom horizontal lines and choose
among the top lines, the line with the largest ρ value and
among the bottom lines, the line with the smallest ρ value.
The same procedure is applied to identify the vertical lines
corresponding to the inner part of the gate. Once, the set
of two horizontal lines and two vertical lines is obtained,
we compute the intersections of each pair of horizontal and
vertical line as a solution to a linear system of equations
using linalg.solve(A,b), with A being the matrix with the
cosine and sine of the orientations of each line, i.e. and b
the vector with the ρ values of each line:

A =

[
cos θ1 sin θ1
cos θ2 sin θ2

]
(1)

b =

[
ρ1
ρ2

]
(2)

From the intersections found, we identify the corner points
and can easily compute the centroid by averaging out the
min and max of the x-coordinates and doing the same for
the y-coordinates. Figs. 10 - 11 demonstrate the output of
this method.

C. Filtering

From the centroids obtained using both methods men-
tioned above, we compute an average centroid estimate. We
also observe that the centroid given in the first method is
more consistent, while the second method requires a better
image to return an output. We also implement a weighted
moving average combining the centroid estimate at current
time step and the average centroid estimate from all previous
time steps to improve on the estimate of the centroid as

Fig. 10: Hough Lines obtained after Canny edges detection
is applied on test image in Fig. 1.

Fig. 11: Centroid (shown as a red circle) computed using
Hough lines from test image in Fig. 1.

we obtain more images during execution. We set a lower
weight coefficient for the average centroid and a higher
weight coefficient for the current centroid estimate. This
helped reduce large deviations from the centroid estimate
as the quadrotor moves.

IV. CAMERA CALIBRATION

A. Estimating camera intrinsics

Camera intrinsic calibration comprises of estimating the
camera calibration matrix K which includes the focal length
and the principal point and the distortion parameters. A
pinhole model was assumed as the projection model and
radtan as the distortion model. Kalibr [1][2][3] package
was utilized for obtaining the system parameters. An Apil
grid was used as the basis for the callibration. The camera
intrinsic parameters identified are as follows.

K =

fu 0 pu
0 fv pv
0 0 1

 =

694.14 0 435.89
0 692.51 210.68
0 0 1


dcoeff =

[
k1 k2 r1 r2

]
=
[
−0.3873 0.3011 0.0017 −0.0030

]
(3)

Multiple sample videos were recorded so as to obtain the
least re-projection error. Fig. 12 illustrates that re-projection
error is less than 1 pixel.



0 100 200 300 400 500 600 700 800

0

100

200

300

400

0.6 0.4 0.2 0.0 0.2 0.4 0.6
error x (pix)

1.0

0.5

0.0

0.5

1.0

e
rr

o
r 

y
 (

p
ix

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

im
a
g
e
 i
n
d
e
x

cam0: reprojection errors

Fig. 12: Re-projection error obtained from Kalibr package

B. Color calibration

Any camera needs to be color-corrected so that the image
sensor data resembles what a human perceives. Although
it is not essential for GMM implementation, it is a good
practice to color-correct the images for easier implementation
and debugging. Further, it enables us to utilise the complete
dynamic range of all channels when converting from bayer
to RGB image.

The raw data from the camera was analysed when it
was pointed at the pure Red, Green and Blue colors. The
requisite biases for correction were estimated and used for
calibration through bcorrect, gcorrect and rcorrect in
__init__.py

V. POSE ESTIMATION

In a pinhole projection model, a scene view is formed by
projecting 3D points into the image plane using a perspective
transformation. The model is given mathematically by,

s

xy
1


C

= K[R|t]


X
Y
Z
1


E

(4)

where, s is the image scaling, K the camera intrinsics and
[R|t] is the composite rotation-translation matrix. ‘C’ and
‘E’ represent the camera and earth frames respectively.

From 3D-2D point correspondences and camera intrinsics,
one can determine object pose with respect to camera by
using (4). Note, that a minimum of 3 corresponding points
are required to estimate the pose. More the number of
points, better the estimate would be, however at the cost
of computation.

Given the information of dimensions of the the window
and the corners from the GMM-CV pipeline, solvePnP

routine from openCV library was used to estimate the pose
of window. cv2.rodrigues had to be used to evaluate the
rotation matrix, RCE . Since, the camera is rigidly mounted
onto the quadrotor, the rotation matrix from camera to body
frame, RBC is constant and expressed as,

RBC =

 0 0 1
−1 0 0
0 −1 0

 (5)

cv2.solvePnP returns the position vector of origin of
earth frame expressed in the camera frame. The origin of
earth frame was arbitrarily chosen to be one of the corners
of the window. The position vector of center of window
expressed in body frame, d̄ is given by,

d̄B = RBE(r̄E + x̄E)

RBE = RBCRCE

(6)

where, r̄ is the position vector of origin of earth frame from
quadrotor and x̄ is the relative location of the centre of the
window from the arbitrarily chosen corner (origin of earth
frame).

0 2 4 6 8 10 12

time (s)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

x 
(m

)

Perpendicular distance of quadrotor from the window

Fig. 13: Distance of the window from the quadrotor

As observed in Fig. 13 and 14, the solvePnP outputs
position data with relatively less noise. A low-pass filter
can be implemented to futher remove the sudden spikes
in the distance data. Further from Fig. 13, it can be seen
that after x = 0.8, we no longer get the data, implies that
the camera’s field of view is not that large to observe the
4 corners of the window for distances less than 0.8m and
hence, this information should be utilized when computing
the trajectory.

-0.5 0 0.5

y (m)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

z 
(m

)

Fig. 14: Alignment of quadrotor with respect to centre of
the window

The pose of window w.r.t. quadrotor expressed in Euler
angles (yaw, pitch and roll) is computed through the follow-
ing set of equations.



ψ = tan−1(r21/r11)

θ = tan−1(−r31/
√
r322 + r332)

φ = tan−1(r32/r33)

(7)

where rij are the entries of the transformation matrix, RBE .

0 2 4 6 8 10 12

20

30

40

50

p
it

ch
 (

d
eg

re
es

)

0 2 4 6 8 10 12
time (s)

-5

0

5

10

ya
w

 (
d

eg
re

es
)

0 2 4 6 8 10 12
-0.2

0

0.2

0.4

ro
ll 

(d
eg

re
es

)

Orientation of Window with respect to Quadrotor

Fig. 15: Orientation of window w.r.t quadrotor

Fig. 15 illustrates how noisy the orientation estimated from
solvePnP is. We have to implement some sort of filters - low
pass, moving average or fuse IMU data using EKF to get a
better orientation estimate. Owing to the noisy characteristics
of the estimate, we did not utilise the orientation data in our
control strategy.

VI. TRAJECTORY CONTROLLER
The trajectory controller is implemented using a simple

bang-bang control. The control law is implemented in image
space using the deviation from the current location as the
control input Fig. 16. We use bang-bang control because
the motion of the quadrotor is stable and the control law
causes little drift. The center location of the image is taken
as the current location of the quadrotor. The centroid of the
colored gate calculated from the image processing pipeline is
taken as the desired location. The deviation in the locations
is given as input to the bang bang controller which generates
a fixed control signal. The actual values for the bang-bang
control in the X, Y, Z axis were determined empirically. The
control input in the X direction (towards the gate) is always
provided after the quadrotor reaches the hover position so
that the quadrotor makes progress in moving towards the gate
which in turn causes the image input to the image processing
pipeline to get better. We use the image processing pipline
to determine when we cross the gate. This is determined by
the pipline seeing more background noise than the gate itself.
Once we have crossed the gate, we provide a control input in
the X-direction to move away from the gate and then land.

The current limitation of our controller is that there is
no control input for performing a yaw. This is because it is
not possible to estimate the orientation of the gate directly

by processing a single image. We tried using the orientation
estimate using the PNP method but the orientation values
were too noisy. Our future work for our controller will
include filtering the orientation values from PNP and then
using the estimated yaw to orient in the right direction and
then move forward.

Fig. 16: Current (red) and desired (green) locations given as
input to controller.

VII. PLOTTING IN RVIZ

We use Rviz to plot the colored window and real-time
waypoint positions of the quadrotor. The colored window is
plotted using the visualization marker array message which
helps plot the individual sides of the colored window. For
plotting the position of the quadrotor, the ROS TF transform
containing the position coordinates were broadcasted from
our program to Rviz every 0.1 sec. The position coordinates
of the quadrotor were generated using PNP. Since PNP does
not perform well when the quadrotor is close to the gate,
we were not able to plot the quadrotor going through the
window. Fig. 17 shows the yellow colored window, world
and quadrotor coordinate systems being displayed in Rviz.

Fig. 17: World and quad frame displayed in Rviz

VIII. CONCLUSION)

We provided the ability to PRG Husky quadrotor to fly
through a colored window. We used GMM to perform color
segmentation and Hough lines and closed contours method to



generate the centroid. The difference in the current location
and desired location (centroid) is input to the bang-bang
controller to control the quadrotor. We used PNP to generate
the position coordinates of the quadrotor in the world frame
for display in Rviz. Due to very noisy orientation estimates
from PNP, our yaw controller did not work as expected
and hence we did not use yaw controller in this project.
Our future work will include filtering the noisy orientation
estimates and integrating the yaw controller into our system.

REFERENCES

[1] Paul Furgale, Joern Rehder, and Roland Siegwart. Unified temporal
and spatial calibration for multi-sensor systems. In 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
1280–1286. IEEE, 2013.

[2] Paul Furgale, Timothy D Barfoot, and Gabe Sibley. Continuous-
time batch estimation using temporal basis functions. In 2012 IEEE
International Conference on Robotics and Automation, pages 2088–
2095. IEEE, 2012.

[3] Jérôme Maye, Paul Furgale, and Roland Siegwart. Self-supervised
calibration for robotic systems. In 2013 IEEE Intelligent Vehicles
Symposium (IV), pages 473–480. IEEE, 2013.


