
ENAE788M Project 3a
Team Bouncing Rainbow Zebras

Erik Holum
Graduate Student

University of Maryland
Email: eholum@gmail.com

Edward Carney
Graduate Student

University of Maryland
Email: carneyedwardj@gmail.com

Derek Thompson
Graduate Student

University of Maryland
Email: derekbt@yahoo.com

Abstract—We examine the problem of flying a Bebop Quadro-
tor through a gate at unknown position relative the takeoff
location of the drone. We first test using several methods of
color segmentation for gate recognition, including thresholding,
single Gaussians, and Gaussian Mixture models; then discuss
the process of identifying the position and orientation of the
gate using camera feedback and the OpenCV Library. Given
an approximate position, we present a method of producing a
filtered reading, then results of testing the control algorithm.

I. INTRODUCTION

In this project, our aim was to develop a computer vision
feedback system capable of autonomously flying our Bebop
drone through a yellow gate at unknown starting position and
orientation. For the purposes of this goal, we assume that the
gate is at least in partial view of the front facing camera at
takeoff, so we will do not require any kind of search algorithm
to locate the gate at start.

The first task was to evaluate several different methods for
doing color segmentation on image data, including threshold-
ing, single Gaussians, and Gaussian Mixture models (GMMs).
We provide an overview of our process and results, and discuss
the many pitfalls we discovered in collecting image data and
training our classifiers.

Given the output of the color segmentation algorithm, we
use the tools supplied by the OpenCV Library [1] to find the
corners of the gate. Once the corners have been identified,
we leverage solvePnP and precomupted camera calibration
information to deduce the location of the gate relative the
quadrotor’s body fixed frame.

Unless otherwise specified, all software was implemented
using ROS [2] and Python.

II. COLOR SEGMENTATION

In this section we discuss our approach for implementing,
training, and testing various methods of color segmentation.
The first step in the process was to gather a significant amount
of test data for training and testing our implementations. We
used rosbag to record images of both yellow and purple gate
for a variety of lighting conditions (day vs. night, different
levels of illuminations settings for overhead lighting). We then
used Matlab’s roipoly function to create mask files to remove
any non-interesting pixels from images selected from our bag
files, as in Figure 1.

Once we had test images and masks, we extracted all
relevant pixels into a single numpy array and were able to
save the data for training in a convienient ‘.npy’ file. We then
examined different color encodings offered through OpenCSV
to see which schemes gave us the most ‘suitable’ shapes for
fitting Gaussians or thresholding. In general, we found BGR,
HSV, and LAB schemes to be particularly useful. A 3d plot
of all training data is presented in Figure 2.

A. Thresholding

The first, and simplest method of color segmentation is
Thresholding. For each pixel [C1, C2, C3], where Ci is a
measurement specific to a specific color scheme, we simply set
limits, εi, to determine if a pixels is ‘yellow’. i.e., Ci > εi for
i = 1, 2, 3. While the simple lower bound produced decent
results, we found that bounding each axis both above and
below proved slightly easier. In particular, for let µi and σi be
the mean value and standard deviation of a training set along
the ith axis, then our test becomes:

σi ≥ |µi − Ci|.

In other words, if each axis is within one standard deviation
of the mean. To test the accuracy of our thresholder classifiers,
we applied the test to all of the images in the training set, then
computed two values:

1) The total percentage of correct pixels over the entire
image, where correctness is defined by our masks.

2) The total percentage of ‘false negatives’ in the masked
region. In other words, what percentage of the masked
values did the classifier correctly identify as yellow?

The second test was particularly informative, since false
negatives are in some way more detrimental towards gate
identifications (at least in our experience). The plots for
different color scheme’s performances are presented in Figure
4. As evidenced by the plots, HSV, YUV, and LAB provided
the best overall ‘performance’. However, regardless of the
color schemes, the images ended up being very noisy. As
demonstrated in Figure 3.

Overall, the simple thresholder performed adequately on
medium lighting, but poorly at the extremes. Which given the
bounds of σi for the entire training set, makes perfect sense.

Fig. 1. Left: Raw image of yellow at 800x460 resolution. Right: Mask generated in Matlab using roipoly.

Fig. 2. Training data for yellow pixels visualized under three different color schemes. Left to right: BGR, HSV, and LAB.

Fig. 3. Result of testing a threshold HSV classifier on a yellow gate.

B. Single Gaussian

We next implemented and testing using a single Gaussian
based on the means, σi, and the covariance, A of the training
data. We compute the likelihood for each pixel, x, without
normalizing,

P (x|ci) = exp

[
−1

2
(x− µ)TA−1(x− µ)

]
.

We set a standard limit of 70% likelihood. A sample image
classification is depicted in Figure 5. Note the drastically
reduced noise.

Repeating the testing process from the threshold classifiers -
the results are presented in Figure 6. Note that YCrCb provided
both the highest noise, but also the most ‘solid’ false negative
performance on the actual gate.

Fig. 4. Thresholding classifier performances for different color schemes. Total percentage correct on the left, false negative correctness on the right.

Fig. 5. Result of testing a single Gaussian YCrCb classifier on a yellow gate.

C. GMM

Finally, we implement an color segmentation tool that using
a trained Gaussian Mixture Model (GMM). This included
implementation of an EM algorithm to converge to optimal
weights πi, means σi, and covariances Ai to fit our data.
Likelihood is computed with,

P (x|ci) =
k∑

i=1

πk

√
detA

(2π)3
exp

[
−1

2
(x− µ)TA−1(x− µ)

]
.

The results of training our GMM using the BGR, HSV, and
LAB color schemes for k=2, k=3, and k=5, respectively, are
demonstrated in Figure 7. Note, we only plot a small subset
(5%) of the training data so that the Gaussians are more clearly
visible, but the fit to the data is also apparent.

Overall, the GMMs significantly outperformed both other
means of segmentation across all levels of lighting. We even
added an additional level, morning daylight with maximum
illumination, and found we were still able to get accurate
results. A sample run of the classifier is provided in Figure
8. Note the significantly reduced noise over the previous
classifiers.

The GMM results for all color schemes at multiple lighting
levels are given in Figure ??. The LAB and HSV color
schemes performed particularly well. The values for k, σi,
and i were all saved to files for quick and easy testing with
the next steps of our project.

III. GATE POSITION AND ORIENTATION

This section reviews calibration of the Bebop’s forward-
facing camera, the methods used to process the masked images
produced from the color segmentation, and the process to
determine the estimated gate position and orientation from this
data.

A. Camera Calibration

Camera calibration was performed manually with the assis-
tance of the open-source Kalibr toolbox. Manual calibration
included configuring RGB value offsets in the camera driver
via color wheel testing and increasing/decreasing the camera
exposure level. Although significant effort was expended ad-
justing the RGB offsets, for our test environment, lighting
conditions, and camera, we found that the zeroing these offsets
out and using the raw images for training and processing
yielded the best results. On the other hand, the manipulation
of the camera exposure levels helped to significantly improve
image masking in various lighting conditions and allowed us

Fig. 6. Single Gaussian classifier performances for different color schemes. Total percentage correct on the left, false negative correctness on the right. Note
the different limits on the y-axes.

Fig. 7. GMM fits. Note only 5% of training data is shown for clearer Gaussians. Gaussians radii at 1-σ. Left to right: (BGR, k=2), (HSV, k=3), and (LAB,
k=5).

Fig. 8. Result of testing a GMM, HSV with K=3 classifier on a yellow gate.

(in some cases) to improve the quality of the mask on-the-fly
with some basic image testing.

The open-source Kalibr toolbox allowed us to easily es-
timate our camera’s principle point and calibration matrix
K. We collected videos at each of our camera’s resolutions
and processed each video using the toolbox. The resultant
matrices and principle points were used in the estimation of
gate orientation and position.

B. Post-Masking Processing

The masked images produced from the color thresholding
were post-processed to extract the information necessary to
determine the position and orientation of the gate. This pro-
cess included extracting edges via Canny edge determination,
finding line segments from the given edges via a probabilistic
Hough transformation, calculating the intersection points of
the Hough lines, and determining the four primary intersection
point clusters (i.e. the gate edges) via K-Means clustering.

Prior to any other operations, the masked imaged was
processed by removing occupied regions of the image that did
not meet a minimum specified size. We experimented with
some basic dilation and erosion operations, both before, after,
and in-between small area removal, and this proved effective at
further refining the image when run on full resolution masked
images. However, erosion and dilation appeared less effective
with the scaled-down images and ended up removing too much
of the gate region, so only small area removal was used to
process images prior to the Canny edge detection.

OpenCV’s Canny edge detector was used to extract edges
from the processed masked images. The minimum and maxi-
mum threshold values for this operation were set to be lenient,
as the small area removal prior to edge detection removed the
majority of image noise and greater effort was focused on the
determination of relevant line segments via a Hough transform.

OpenCV’s Probabilistic Hough transformation was used to
extract line segments from the Canny edge images. Significant
tuning was done with the minimum required line length and
number of intersections and the maximum line gap parameters
to eliminate as many errant line segments as possible. This

reduced the number of segments needed to process for inter-
section determination (an O(n2) operation). Additionally, the
line segments were post-processed via an extension algorithm
to increase the line length and ensure that there were sufficient
intersections to determine gate corner position.

Every line segments was then processed to extract all unique
intersection points and NumPy’s K Means clustering function
was used to determine the four main point clusters within
the image. All lines were checked for intersections, although
included in each check was a step to compare the orientation
of the lines relative to each other. This was done by comparing
the line normal vectors, if the difference between the line
normals was not significant (implying that the two lines were
not close to perpendicular) any intersections between the two
lines were ignored. This allowed us to throw out intersection
points that may erroneously offset the K Means clustering
results. As it was easily possible to obtain images where the
intersection points only clustered in two or three areas (e.g.
only a portion of the gate is within view), a post-processing
step was run on the cluster regions to determine if any of the
points were within a set radius of another cluster point; in
these cases it was likely the full gate was not within view and
the resultant gate position and orientation estimation would
yield erroneous results, therefore these data were ignored.

Figures 1 and 12 show the above process visually on a
sample image from testing.

C. Getting Position and Orientation

With the gate position relative to the vehicle’s body frame,
the gate frame in the world frame could be computed. The
relative position from the body frame was projected from the
vehicle’s current odometry to get a position in the world frame.
The projection only used the yaw from the vehicle’s current
attitude as the vehicle does not make aggressive enough
maneuvers for the pitch and roll to significantly contribute
to the projected gate position.

Once the was computed the gate positions were filtered
to get a final estimated gate position. A log of the last n
gate position and heading readings is maintained during the
gate navigation. For our trails we used a log length, n, of 20
readings. While a gate position or heading is not confirmed,
the filtered calculates the standard deviation for the position or
heading reaches a low enough threshold the gate location or
heading is confirmed. To filter out bad measurements another
threshold is used to discard bad data. If the new gate reading
is further from the current estimated gate position or heading
then said threshold, the reading is discarded.

IV. STATE LOGIC

In order to control what the drone was doing at various
steps in going through a gate, logic to control the process was
created. The states follow a linear progression from the initial
state to a defined final state. Each state contains information
on what the drone needs to be doing at during this state and
what conditions need to be met in order to move to the next
state. The states are initialized as follows.

Fig. 9. GMM classifier performance on training data for k=3. The GMM method of classification was far more accurate that either other tested.

Fig. 10. Masked Gate Image

Fig. 11. Gate Image with Post-Processing and Corner Detection

states[n] = States(own State Number,

next States Number,

exit Condition Type,

exit Condition Threshold,

gate Detection Active,

controller Type,

fly WP Location,

look WP Location)

(1)

Fig. 12. Gate Pose and Orientation Determination

During the control loop the exit condition is checked and the
proper controller called. The exit condition can be time based,
distance based, or a check of if it has confirmed a gate. Once
the exit condition is met the states is progressed to the next
state number. The controller type defines the how the vehicle
navigates towards its desired location. This is further explained
in the next section. The fly WP Location defines where
the drone will try to fly if it is flying to a point in space,
while the look WP Location defines where the vehicle will
point towards while it is flying to the point. This is set to
null when the vehicle is flying towards a gate. These point are
also relative so they are defined relative to the drones position
when it exits the previous state. This is to counter drift in the
odometry over numerous states.

When flying through a gate 3 states are used. The first states
guides the vehicle to a point in space where it will have the
best chance at seeing the gate. During this state the detection is
active, trying to lock onto a gate location. This states is exited

once a gate location has been found. The next state works
off of the gate visuals to align itself with the gate and move
towards it. At a certain point the gate is no longer visible in
the camera frame, at which point the states is switched to the
next again. This is trigger by distance to the gate. The final
state traverse the gate for a certain amount of time before the
state is exited and the system is shutdown.

V. CONTROLLER

The controllers used for the system were defined in three
separate functions, forward navigation, gate navigation, and
point navigation. The point navigation is the same method used
for project 2, and is used to fly to a position in space. This
controller that uses a receding horizons approach is outlined in
the paper for project 2. The forward navigation is the simplest
controller as it just commands the vehicle to pitch forward at
a desired angle. This controller is fully open loop and is just
used to navigate through the gate. When this controller is used
it is assumed the vehicle is already perfectly lined up with the
gate.

The gate navigation was the designed to align the vehicle
with the gate and put it on a trajectory to safely pass through.
The controller executes the altitude and rotational controller
independent of the lateral positional controller. If the position
of the gate is found before the heading is confirmed the
vehicle will rotate towards the gate and climb to the correct
altitude to get a better view of gate. Once the gate heading is
confirmed the lateral controller moves towards the normal line
and through the gate. The basis of the lateral controller uses
the same receding horizons approach as the point navigation,
except the axis in which the positional error is calculated.
Instead of the X and Y position error, the controller uses
the distance from the gate and the angular distance from the
normal line of the gate. The velocity desired towards the gate
is calculated as a function of the lateral error from the normal
line. The vehicle will stay 2 meters from the gate until the
lateral distance from the normal line is below a threshold.
The desired velocity graph of the gate navigation controller is
displayed in 13.

VI. VIDEOS

Videos of the resultant 5 successful test flights are available
on YouTube:

1) Gate Test 1: https://youtu.be/BGtruLiFxVs
2) Gate Test 2: https://youtu.be/DDylRoM9s-M
3) Gate Test 3: https://youtu.be/tH4sCgbIr8
4) Gate Test 4: https://youtu.be/okbT4J4FrDQ
5) Gate Test 5: https://youtu.be/eWJlJ4Y-VXg

VII. IMPORTANT LESSONS LEARNED

One of the most significant lessons learned through our
testing and development is the impact that lighting can have
on the overall performance of the color segmentation. With all
of our segmentation methods there was a noticeable effect on
masking performance when the model was used in scenarios
where the lighting conditions were different from the lighting

Fig. 13. Gate navigation velocity

conditions in the training data. We attempted to minimize the
net effect of this by capturing data at different times of day
and using the various data to train the models. However, even
minor environmental differences (e.g. cloud coverage) could
result in detrimental impacts to performance. One of the most
effective tools to counteract these effects in real time proved to
be the ability to change the camera exposure, which allowed us
to offset the current environmental lighting effects and better
match the model training data.

Another factor that we discovered had significant impacts
on the quality of our masked images was the resolution of
the video. We had initially collected test data for training
the color segmentation models at a resolution of 800x460;
this included data collected at various lighting conditions
and at different times of day, and multiple models trained
using different color spaces. These models worked very well
on the recorded data; however, the real time performance
was drastically reduced. It required significant exploration of
potential problems before we realized that the real time data
was being captured at a higher resolution (1280x720) and that
the performance of models trained at a lower resolution was
impacted by this discrepancy. Updating the real time video to
800x460 resolution increased the quality of the masked images
and resulted in overall improved performance.

- HAVE A SPARE UP BOARD

ACKNOWLEDGMENT

The authors would like to thank the professors for this
course, Nitin J. Sanket and Chahat Deep Singh, as well as
Dr. Inderjit Chopra.

REFERENCES

[1] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000.

https://youtu.be/BGtruLiFxVs
https://youtu.be/DDylRoM9s-M
https://youtu.be/tH4sCg_bIr8
https://youtu.be/okbT4J4FrDQ
https://youtu.be/eWJlJ4Y-VXg

[2] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009.

	Introduction
	Color Segmentation
	Thresholding
	Single Gaussian
	GMM

	Gate Position and Orientation
	Camera Calibration
	Post-Masking Processing
	Getting Position and Orientation

	State Logic
	Controller
	Videos
	Important Lessons Learned
	References

