
CV Window Detection and Penetration
Vishnu Sashank Dorbala
University of Maryland

vdorbala@umd.edu

Tim Kurtiak
University of Maryland

tkurtiak@umd.edu

Ilya Semenov
University of Maryland

isemenov@umd.edu

Surabhi Verma
University of Maryland

sverma96@umd.edu

Abstract—This report presents the implementation and results
of a window detection algorithm used for quadcoptor navigation
through said window. Color thresholding, edge detection and
pose estimation methods were executed to identify and navigate
through a yellow and a purple window.

I. PROBLEM STATEMENT

This project aims to implement an algorithm which used an
on-board camera to detect and navigate through a purple and
yellow window. The window dimensions are specified below
in Figure 1 .

Figure 1. Window Dimensions

The quadcopter must identify the window, estimate its dis-
tance and pose relative to it, and then fly through the window.
This task requires significant coordination between computer
vision, position estimation, and the aircraft controller.

II. COLOR THRESHOLDING

Color thresholding is used to isolate the yellow and purple
windows within the on board camera image stream. Color
thresholding works by identifying pixels within the image that
match a sample set of training data which has been hand
selected. Several methods with varying levels of complexity
can be implemented to achieve color thresholding.

Manual Thresholding: Manual thresholding simply works
by specifying a range of acceptable pixel values and checking
the value of each image pixel against that range. Equation 1
below shows an example of manual thresholding in an RGB
color scheme. 

Rlower < R < Rupper

Glower < G < Gupper

Blower < B < Gupper

(1)

The manual thresholding approach specifies a bounding box
in the color space where values within the box are accepted.
However, the bounding box often does not fit the sample data

well and may include colors which are not intended as the
target color. In order to remedy this, a custom color space can
be generated by rotating the 3-dimensional RGB color space
to allow a bounding box to better fit the data. However, the
limitation of manual thresholding to a course box limits the
usefulness of this method and leaves much to be desired.

Single Gaussian: Statistics provides a useful tool, the
multivariate normal distribution, which can be used in color
thresholding to represent a set of sample data as a probability
function. Below in 2, we use a Gaussian distribution in 3
dimensions to represent the probability that a pixel is in the
training data set.

p = N (x, µ,Σ) =
1√

(2π)3 |Σ|
e−

1
2 e

T
0 Σ−1e0 (2)

Where p represents the relative probability that the pixel is
within the sample set, Σ is the empirical covariance of the
training data and e0 is the error between the sample pixel x
and the training set empirical mean µ. While in this form p
does not have a physical significance of probability, it can be
used as a relative measure of fitness of the data to the target
distribution.

In practice, the probability value for each pixel in an image
is calculated and normalized to the maximum probability
according to the equation below:

pnorm(x, y) =
p(x, y)

max (p)
(3)

where x and y represent x and y pixel coordinate position
within an image.

A threshold T is defined as a value between 0 and 1 and
used in conjunction with the model above to filter values which
best match the single Gaussian model.

The single Gausian model is computationally fast and does
a good job of representing simple sets of training color data.
However, it will have difficulty representing more thorough
datasets where lighting conditions change.

Gaussian Mixture Model: In order to better fit complex
training color datasets which may not be well represented by a
single Gaussian model, a weighted sum of multiple Gaussian
models may be used. Simply:

p =

K∑
i=1

πiN (x, µi,Σi) (4)

Where K is the number of Gaussian model clusters used
to represent the data. When generating a Gaussian mixture

model, it should be noted that a higher K will result in a
more computationally expensive solution and may slow down
real time applications.

Generating a GMM can be executed through an iterative
process called Expectation Maximization. First, the Gaussian
Mixture Model is initialized with a set of random means and
a random positive semidefinite covariance matrix. It is best to
initialize the covariance matrix to a large value to begin with,
otherwise the model can encounter a divide by zero error in
the first step.

The E-step evaluates the model correctness at its current
state. To do this, a cluster weight is assigned according to
Equation 5 below.

ai,j =
πjp(xi|Cj)∑K
j=1 πjp(xi|Cj)

(5)

where i is the data point in the training set and j is the GMM
cluster index out of K clusters. The values for a represent a
relative goodness of fit for the cluster model j to data point i.

The M or Maximization step uses the results from the E
step to reset the GMM cluster values to better fit the data.
The following updates to the mean, covariance, and weighting
factors are executed.

µj =

∑N
i=1 ai,jxi∑N
i=1 ai,j

(6)

Σj =

∑N
i=1 ai,j(xiµj)(xiµj)

T∑N
i=1 ai,j

(7)

πj =
1

N

N∑
i=1

ai,j (8)

The process is then iterated until the models converge. Simple
convergence can be determined by observing the change in
model means from the previous step to the current step.
However, the convergence of the overall GMM mean does not
have much significance since one part of the model moving
in the opposite direction of another may result in a net neutral
model mean. For this implementation, it is recommended to
judge convergence by setting a small threshold on the change
in model weight factor

∑K
j=1 πj . This convergence criteria

guarantees that the model has settled to a steady state. Model
convergence may be computationally expensive and take some
time depending on the initial guess.

GMM solutions are typically very good, but some clusters
may be less beneficial than others. For example, a GMM with a
weak cluster weight which is an insignificant percentage of the
total cluster weights may not be benefiting from the number of
total clusters. The weak cluster could just as easily be removed
and result in no loss of model fidelity. It is recommended to
review output weighting factors for extremely small weights
and consider reducing the GMM cluster dimension if such
clusters are found.

The implementation used in this report uses a cluster value
of K = 3 in order to benefit from the increased robustness

of GMM while maintaining a minimal computation time.
However, computation time was still too slow with GMM even
after reducing image size to 20%. As a result, a compromise
was made to use a well tuned single gaussian for thresholding
instead of GMM in order to prioritize run time.

Sample yellow window thresholding results for GMM and
single gaussian are included below in figure 2 . The results
clearly show that both GMM and single gaussian are able
to identify the window in low light. This particular image
also suggests that the single gaussian performs better than
GMM, however the true measure of performance can only
be demonstrated in multiple angles and lighting conditions.

Figure 2. GMM and Single Gaussian Thresholding

Finally, the training sample set in RGB space is shown
below in 3

Figure 3. RGB values in color space

III. VERTEX/EDGE DETECTION

Detecting vertices was accomplished through a procedural
iterative process, with many explored options. The final result
is both robust to the most inconvenient of noise, and relatively
fast to execute. There is room for improvement in continued
optimization, as the process time is not insignificant, and better
rejection of false positives.

The vertex detection is a 6 step process: basic thresholding,
gaussian thresholding, mask closing, edge detection and fil-
tering, line application, and finally vertex location. Each step
will be explained below.

Figure 4 below shows a low light raw camera image which
is difficult to process.

Figure 4. Sample Image

The first step is to use basic RBG thresholding. First the
image is passed with a 3x3 kernel median blur, then a 5x5 ker-
nel median blur. This smooths out colors within edges without
distorting the edges too much. Next, two points were selected
in pre-proccesing that were a part of the gate in the highlight
and shadow in order to apply a course manual threshold.
These are chosen as the upper and lower thresholding values
respectively, and a padding is added to both. This purposefully
creates an over selective mask, see figure 5. This significantly
reduces the number of pixels which additional operations must
be performed.

Figure 5. Masked Image

The next step is to use this image to apply a single Gaussian
filter. The result is a mask with minimal error as shown in
figure 6

With a suitable mask achieved, a series of dilations and
erosions is performed to close any parts of the mas that are
close together, and remove small noise away from areas with

Figure 6. Extracted Mask

a high concentration of pixels that match the yellow window.
The result from this is a blocky series of shapes depicted in
figure 7.

Figure 7. Mask after Dilation and Erosion

This allows us to preform one of the most critical steps in
the vertex finding process, contour fitting. A contour function
fits a line that describes the perimeter of the shapes found in
this dilated mask. These contours represent important edges,
and the ability to draw them allows us not to have to use a
Canny edge detection function. Contour finding is relatively
expensive, but allows for filtering of noise that tends to cause
difficult to filter errors in other implementations.

The largest contour by enclosed area is assumed to be the
window. Rarely will there be a continuous set of noise in
the mask after dilation and erosion operations that is larger
than the window. This allows us to simply and immediately
disregard any countours whose centroid lies far outside of the
largest contour.

Furthermore, because the contours themselves are edges
they replace the need to use and tune Canny function parame-
ters. Instead, it is simple to select the contours whose length is
some acceptable fraction of the length of the largest contour.
This selection based on area allows us to account for distance
in the selection of acceptable edge lengths. Consider an image
that displays a window far away, its area will be small relative
to the area of a contour of a window that is close by. The
perimeter of the windows edge may not be continuous due to
noise, and because of distance, the pixel length of potentially
crucial edges of an image depicting a distant window may be
comparable to the length of edges depicting random noise in
other images depicting a window near by. It can be very hard
to pick the acceptable edge length using other methods before
having some metric related to the distance of the window from
the camera. Contours allows us to expect some range of edge
lengths in pixels before having a good estimate of window
pose relative to the camera.

This technique also accounts for noise that occurs very
close or inside of the pixel space depicting the window. One
of our earlier attempts at vertex detection used contours to
mask Canny edges near the largest contour. This approach
was effective in reducing noise well outside of the window’s
pixel position, however, noise that occurred within or near
the window’s pixel position was kept in this mask. Any such
noise in the color thresholding mask that occurs behind the
window, and therefore within the window’s pixel space, had
major effects on the estimated location of the vertices of the
window in this more traditional Canny based algorithms.

Once the filtered contour edges have been selected they are
drawn and look like what is shown in figure 8.

Figure 8. Relevant Edges of the Mask

Lastly, a probabilistic Hough line transform is performed
on these edges. This method is less computationally intensive
than a standard Hough line transform and allows for greater
tuning of acceptable lines based on contour perimeter prop-
erties found earlier. Additionally, the calculation of infinite
line intersections in point slope form only involves algebraic

division, multiplication, addition and subtraction, whereas the
intersections in polar form involve the calculations of sines and
cosines. The lines given by the Hough transform are split up
into near horizontal and near vertical lines, all others are dis-
carded. Then only intersections between these near horizontal
and vertical lines are found rather than all intersections since
these are the most relevant. Refer to figure 10 for a depiction
of the lines a probabilistic Hough transform returns. Note that
these lines are interpreted as infinitely long when performing
intersection operations.

Figure 9. Relevant Lines of the Mask

The maximum and minimum x and y pixel coordinates of
the intersections are used for several purposes. First, they are
used to find the overall aspect ratio of the image feature, if this
ratio is far outside of acceptable values for the window, then
it is concluded that these features are noise. Additionally, if
intersections are found near the midpoint of the extremea, they
are discarded as no relevant corners would exist close to the
window’s center. Finally, the midpoint of the extremea is used
as the intersections of 4 quadrants, allowing the sorting of all
intersections into groups related to each of the four corners of
the window.

Once the intersections are sorted, the ones that are closest to
the midpoint in each quadrant are labeled as the inner corner
points, and the furthest ones are the outer corners. The results
are shown in 10 below.

This completes the procedure for locating vertecies of
the window. It has advantages in noise filtering and is fast
compared to other methods with equal performance. The
downsides are the tendency to get outer corners that are further
out than the window corners due to the slightly trapezoidal
shape, and curved edges. However, inner corners are more
accurate, and only they are used for pose estimation.

IV. POSE ESTIMATION

In order to estimate pose from vertex points of a known
window, we use the Opencv PnP algorithm which gives us
the pose ([rcw|tcw]) of an arbitrarily defined world frame (w)

Figure 10. Output Corners of the Window

relative to the camera (c) frame attached on the bebop.
We define the world frame to be attached to the center of
the window. This is the point where we would ideally like
the drone to reach and go past it. However, ROS accepts
commands in terms of velocities, along and about the body
frame, to move the robot to a particular point, rather than the
location of the point itself. So there are three frames into play
here, the world, camera and body frame.

We have the following from Opencv’s SolvePnP:
• The rotation vector of w wrt c: rcw
• The translation vector of w wrt c: tcw
• The rotation matrix of w wrt c: Rc

w = Rodrigues(rcw)

From this we calculate:
• The rotation matrix of the body frame wrt camera frame:

Rc
b =

0 −1 0
0 0 −1
1 0 0


• The rotation matrix of the world frame wrt body frame:
Rb

w = (Rc
b)

T ∗Rc
w

• The translation vector of the world frame wrt body frame:
tbw = (Rc

b)
T ∗ tcw

We determine the body frame relative to the world frame:
• The rotation matrix of the body frame relative to world

frame Rw
b = (Rb

w)T

• The translation vector of the body frame relative to world
frame twb = −(Rw

b)T ∗ tbw
This allows us to place way-points in the world frame

relative to the window, and translate them into the body frame
as x,y,z and yaw desired poses. These poses are passed to the
controller function as the desired vector in the body frame.

V. IMPLEMENTATION

Our approach towards implementing the window passing
task consists of two stages. First, we use techniques in
Classical Computer Vision to perform operations for obtaining

”key points” from a camera sensor image. We obtain these
points using colour thresholding, as well as using a Gaussian
Mixture Model. We also implement a single Gaussian filter
that thresholds image colours based on the These points (4
inner corners, 4 outer corners, and the center of the window
) are then used to solve camera extrinsic that give us the
orientation and position of the target window in the 3D world
frame, with respect to the 2D image frame. This information
is used to identify desired change in position and orientation
in the body frame which is passed to the controller.

The controller is a simple heuristic P controller on the
desired pose. The gains on the vector and yaw orientation
are tuned and a few heuristic statements are accounted for:

• If no corners/valid pose estimation is found, yaw in the
direction of the largest color thresholded mask contour,
which implies yawing toward the window if only a
portion of it is seen.

• If the desired vector has a large z component, perform
only z adjustments first, this alleviates the wide difference
in gains found between z and x,y motion commands as
well as increases likelihood that the window corners will
be seen throughout the maneuver. This effectively priori-
tizes getting in plane with the window before translating
toward it.

• If no new desired vector has been acquired, perform a z
translation in the direction of the last desired vector’s z
component. This accounts for issues where the drone is
too close and too far above or below the window to get
an accurate estimate for position

VI. RESULTS

Thresholding result videos are posted here: https://www.
youtube.com/watch?v=E15kOavVWCg

Tim notes:: we flew thre one okay, but had issues with all
the others. one of the main problems is that the pnp estimates
are worse the farther away you are, but also result in more
erratic approach paths. By the time you get close enough to
get good cosnistent readings youre fucked with how much you
can or can not see and shit. Tuning to lighting conditions was
rough, as the sun set somewhat by the time we got going,
so the filters based on 0% lights or 50% lights or whetever
didn’t apply anymore. We crashed through a few, thats just
not enough stop and gain confidence in your estimate before
flying through. idk what else to say

VII. LESSONS LEARNED

The most valuable lesson learned was the importance
of a sound controller strategy relative to accurate position
estimates. A mistake was made in focusing too much on
optimizing tuning parameters for computer vision and accurate
PnP solver returns, that the time left for using this data in a a
controller was minimal. Aspirations of a proper PID controller
with odometry assistance and drift correction via computer
vision exist, but time constraints forced a simpler approach.
As a result, despite good vertex detection and pose estimation,

https://www.youtube.com/watch?v=E15kOavVWCg
https://www.youtube.com/watch?v=E15kOavVWCg

this information failed to provide adequate value due to the
simple controller scheme.

Additionally, the importance of optimized calculations in
code were very apparent in this project. The best example
is the initial working implementation of a Gaussian filter
using a for loop being unusable due to calculation time.
Correct output is no longer enough, and solutions optimizing
multidimensional array operations needed to be found.

Lastly, the effect of lighting on computer vision perfor-
mance was very apparent here. Training the filters for a variety
of not only light intensities, but also types (outdoor, indoor,
directional,etc.) was a major challenge. One solution does not
fit all implementations in this case. A more robust masking
approach is left to be desired.

VIII. CONCLUSION

while peak performance was not achieved through this
implementation, a few tw

	Problem Statement
	Color Thresholding
	Vertex/Edge Detection
	Pose Estimation
	Implementation
	Results
	Lessons Learned
	Conclusion

