
Mini Drone Race-USING 1 LATE DAY
Mrinalgouda Patil

Alfred Gessow Center of Excellence
University of Maryland

College Park, Maryland 20742
Email: mpcsdspa@gmail.com

Curtis Merrill
Alfred Gessow Center of Excellence

University of Maryland
College Park, Maryland 20742

Email: curtism@umd.edu

Ravi Lumba
Alfred Gessow Center of Excellence

University of Maryland
College Park, Maryland 20742

Email: rlumba@umd.edu

Abstract—This paper presents an approach for target identi-
fication and navigation. First, a Gaussian Mixture Model was
created to detect a yellow window. Next, a closed loop controller
was created and tuned such that any arbitrary trajectory could
be followed. Finally, these two methods were integrated such that
a yellow window could be detected and flown through.

I. INTRODUCTION/PROBLEM STATEMENT

The goal of this project was to navigate through a colored
window (Figure 1) of known size but unknown position and
orientation. It involves the estimation of the window pose
in 3D and implementation of trajectory planner and control
algorithm to go through the window.

Fig. 1. The Project goal is to fly through a colored gate.

II. CAMERA CALIBRATION

The first step in the project was to calibrate the camera
provided. Both color and intrinsic calibration were performed.

A. Color Calibration

The camera was color calibrated using by tuning the
bcorrect, gcorrect and rcorrect values. The calibration was
performed for 800 × 460 resolution as this was used for the
subsequent tests.

B. Intrinsic Calibration

Camera Intrinsic calibration entails with estimating the
camera calibration matrix K which includes the focal length
and the principal point and the distortion parameters. We used
the calibration package Kalibr developed by ETHZ. An april

grid was used to calibrate the camera. The following is the K
matrix after calibration.

K =

702.932 0 427.86
0 700.346 227.57
0 0 1

 (1)

III. COLOR IDENTIFICATION

Talk about how broken into different components. Color
thresholding, single Guassian, and finally Guassian Mixture
Model

A. Color Thresholding

Color thresholding is a process where colors are selected for
simply by keeping pixels that fall within a certain treshold of
values and throwing out the rest. Color thresholding worked
really well when it was tuned to a particular instance. However,
once the lighting conditions were varied even a small amount,
the thresholding became really unreliable. The lack of robust-
ness in different lighting conditions limited the usefullness of
color thresholding.

B. Single Gaussian

For efficiency, the Single Gaussian was implemented with
the GMM and setting k=1. The Single Gaussian was more
robust than the color thresholding, but still struggled with
lighting variations that were very significant.

C. Gaussian Mixture Model

Gaussian Mixture Model (GMM) was implemented to de-
tect the window. The model was trained with camera images
obtained from different lighting conditions and orientations.
It was also trained with different number of clusters. The
prediction results obtained from GMM were good. If the
model was trained with some low light images, it would even
show the violet color in the test set. This caused problems,
hence the model was not trained with very low light images.
The below figures show the GMM model predictions obtained
for two cases namely, low lighting and high lighting for
different number of clusters: 2, 3 and, 6.



Fig. 2. Camera image with high lighting

Fig. 3. Camera image with low lighting

Fig. 4. GMM model with k = 2 for low-lighting image

Fig. 5. GMM model with k = 2 for high-lighting image

1) Number of clusters, k = 2:

Fig. 6. GMM model with k = 3 for low-lighting image

Fig. 7. GMM model with k = 3 for high-lighting image

2) Number of clusters, k = 3:

Fig. 8. GMM model with k = 6 for low-lighting image

Fig. 9. GMM model with k = 6 for high-lighting image



3) Number of clusters, k = 6: In conclusion, increasing the
number of clusters did not show much help in the window
detection.

D. Line/Shape Fitting

To take the results from color identification and translate it
into useful knowledge about the window’s position relative to
the quadcopter, vertices corresponding to the corners of the
window had to be detected. To accomplish this, first Canny
edge detection was applied to the camera’s image after it had
been filtered by the GMM to quantify where the edges of the
window were in the camera’s view. The Open CV function
Hough Lines was then called with the output of the edge
detection algorithm to get position and angle parameters for
lines fit to edges that had been detected by the camera. The
lines were then clustered using the select k means algorithm
with a k of two to be able to separate detected lines into
categories with large relative angles between them. Window
vertices were then detected by identifying where Hough Lines
in one cluster intersected with Hough Lines in the other cluster.
The intersections were then clustered and each cluster was
averaged to assign a single point for each vertex. In the
event that there were more than 4 clusters of Hough Line
intersections, the algorithm took the 4 clusters with the highest
number of intersections in them and identified those as the
window vertices. The positions of the vertices in the image
and the coordinates of the window (assuming the centroid of
the window was at (0, 0, 0)) were then fed into the Open
CV Solve PNP function along with the intrinsic calibration
parameters of the camera to solve for the camera’s position
and orientation relative to the center of the window.

In practice, this worked with sufficient accuracy in the event
that the windows was entirely in the camera’s field of view.
However, when only a part of the window was in view of the
camera, there were problems that occurred. When only one
edge of the window was detected, and no edges were detected
perpendicular to that edge, the select k means clustering
would still create two clusters of lines, and as a result, line
intersections would be detected along the one edge that was
detected, and the algorithm would detect 4 vertices along the
edge. When these vertices were then fed into the Solve PNP
function, it tried to fit a rectangular shape to a line, which
gave particularly bad position and orientation results. A filter
was written to detect instances where 4 vertices were detected,
and the 4 vertices were close to a line shape, which helped to
prevent this problem. In the event that 2 vertices were seen,
the code estimated which edge of the window was detected
based on its orientation and which quadrant of the field of
view it was in, and then ran Solve PNP on those two points
and the corresponding 2 points of the physical window. This
also caused some problems as only detecting 2 points yielded
highly varying and imprecise positions and orientations. In the
event one vertex was detected, the assumption that if only one
vertex was in the field of view, which vertex it was could be
assumed from which quadrant of the image it was showing
up in. (i.e. if in the top right part of the picture, it would

be assumed to be the bottom left corner of the window) In
the event one or two vertices were seen, rather than rely on
PNP data, instructions were sent to the controller to move the
quadcopter in small increments to try and get more of the
window in the field of view of the camera so that better pose
data could be collected.

IV. CONTROLLER

From a trajectory standpoint, this project presents a step
up in difficulty from the last project as now the trajectories
are unknown until runtime. For the last project, an open loop
control system was be used, as the exact trajectory was known
beforehand, and the control inputs could be tuned to obtain
that exact trajectory. When testing the open loop controller,
it was noticed that if command inputs were nonlinear, as if
the velocity was doubled, the quad wouldn’t go exactly twice
as far. Therefore, for an arbitrary trajectory, such as the one
found in this project, a closed loop control was desired for
robustness.

A. Controller Logic

During flight, the bebop publishes its position and velocity
(bebop odometry). Based on this, it was decided that a PD
controller would be used.

Very quickly, it was discovered that coordinate
transformations would be a problem, and a potential
source for error (see Lessons Learned). The position given
by the bebop is published in a global reference frame, with
the origin and orientation of this frame set when the bebop
takes off for the first time after being turned on (and will
only reset when turned off/on again). However, the velocity
given by this channel was in body frame of the bebop. The
control inputs for the bebop are also given in the body frame.

To deal with this, the following steps were taken:
1) The desired waypoint was converted from the local

frame to the global frame set by the first odometry
message.

2) The raw odometry data was converted into the global
frame. This only affected the velocities in x and y (the
quad can only sustain steady pitch and roll angles of 0)
which were transformed using the yaw angle.

3) The error in position and orientation (just yaw) was
found in the global frame. The since the desired velocity
was 0, The velocity itself was the change in error vs.
time.

4) The new control input was calcualted using the gains
Kp and Kd and the position and velocity errors.

5) Steps 2-4 were repeated until the quad arrived at the
waypoint.

Convergence is when the quad position, orientation, and
velocity errors are all under some threshold. Originally, just
position and orientation errors were used and the quad would
fly through the waypoint (on the way to an overshoot) and
then try to fly through the next waypoint. This would lead



to increased drift and instability over time, and adding the
velocity tolerance ensured the quad had reached a stable
position at the waypoint before moving to the next waypoint.
Tuning the controller also helped reduce the overshoot.

B. Tuning

The PD controller was tuned by flying two trajectories. The
first was a simple straight line just to isolate one direction at
a time. This straight line trajectory wa repeated in different
orientations (global frame) and used to verify that all of the
axis transformations made in the controller were right (this
is how it was discovered that the velocity is given in the
body frame). Next, a 3D diamond (similar to the one from
Project 2) was used to test what happened when the quad
was moving in all 3 directions at once.

The goal of the project was not speed, but accuracy and
the choice of gains reflected that. The emphasis on Kd was
higher than Kp, increasing the initial rise time but decreasing
the overshoot.

V. INTEGRATION

Next, the controller was integrated with the camera. The
camera gives the location of the gate in the camera frame
(seen in Figure XX), which is different from both the bebop
body frame and the global odometry frame. To fix this, the
first waypoint was defined as the yaw angle between the gate
and the current bebop position. With this yaw, the local bebop
frame and the camera frame align, making it much easier. The
next waypoint was defined using the camera x,y, and z inputs,
and was set to be 1.5m behind the gate in x and aligned
in y and z. An offset of .1m was used in the z direction
to account of the fact that the camera was mounted below
the center of the quad. This entire process was done using
only one camera input (to obtain the global waypoints), the
rest was done using the closed loop controller described above.

Fig. 10. Camera and Local Axis System. The X, Y, and Z values given by
the PNP (whats shown in the video TestSetOutput.mp4) are in this axis.

To summarize, the overall control loop can be summarized
using the following steps:

1) The location of the quad with respect to the camera was
given to the controller and used to set the waypoints
(one message, not a subscription).

2) Next, the quad yaws such that the camera axis lines up
with the local bebop axis.

3) The quad then moves to line up with the window in y
and z with a 1.5m offset. The initial x, y, and z positions
from the camera are used to set the waypoints.

4) The position relative to the camera is found again, and
if the drone is not lined up, new waypoints are set and
steps 2 and 3 are repeated.

5) If the drone meets a threshold for being ”lined up”, then
it moves forward through the gate (past the gate by 1m
(just moved in x).

Fig. 11. Controller Logic

The threshold for being line up was set to be less than ±
6 degrees in yaw and ± .1m in x and y respectively. The x
distance from the gate had to be between 1 and 2 meters (as
long as it was line up straight, x really didn’t matter too much,
as the final approach was only given in x).

VI. RESULTS

During the test, we only had time to test the first two
trajectories (both straight line trajectories). We were able to
successfully complete the short trajectory, but not the long run.
During the long run, there were several attempts that looked
good, in that they reached the final waypoint 1.5m normal to
the gate and looked lined up, but the code never recognized
this. There were also several attempts where the quadrotor
would yaw by a very large angle (not close to the proper
angle), causing the camera to lose sight of the gate. After these
attempts, we would immediately land and try again. Some
reasons for why we believe both of these issues occured, and
how we might improve on this in the future, are presented in
the next section.

VII. CONCLUSION AND LESSONS LEARNED

One issue that was accounted was the errant messages that
would come in from the camera (from the PNP function).



This problem was evident especially in yaw, where the angles
would vary by as much as ± 30 degrees. We believe this
was a large reason for why we would occasionally have
yaw angles that would take our camera out of sight of the gate.

We learned that the PNP data is noisy, even if the GMM
is tuned, because the waypoints are in a 2D plane (hard
to get yaw) and because the lighting through the window
can cause streaks that lead to errant data. One solution to
this is using multiple data points from the PNP instead of
just relying on one data point, as that one point might be
wrong. Some options for how to implement this could be as
fancy as an EKF filter or as simple as a moving average. For
future projects, we will use some averaging for data from our
cameras to help reduce noise.

Another issue that we encountered was that the closed
loop controller sometimes would seem like it converged but
wouldn’t. This happened when we would be lined up in front
of the gate, with the proper orientation, but would eventually
hover away. When first developing and testing the closed loop
controller, we discovered this problem, but were able to fix it
by adjusting the tolerances (especially in yaw and z). However,
this testing was done in a different location and perhaps the
odometry data on this surface is a little more noisy (although
the IRB surface should be better). In summary, we haven’t
identified exactly what this issue is, but we have a test plan
for how to combat it. We are planning to tune our closed loop
controller at IRB to try and recreate this problem. Then we
can look at the position and velocity error, hopefully allowing
us to identify and fix the issue.

REFERENCES

[1] ENAE788 Class 5 Slides
[2] Some Code taken from learnopencv.com/rotation-matrix-to-euler-angles/


