
ENAE788M Assignment 3b - Landing on Bullseye Marker

Estefany Carrillo, Mohamed Khalid M, and Sharan Nayak

I. INTRODUCTION

This project provides the ability to PRG Husky to land on
the Bullseye Marker. We use image processing algorithms to
detect the Bullseye marker and determine the location of the
quadrotor with respect to the Bullseye marker. Finally, we
use a proportional controller to move towards the marker.

II. TAG DETECTION

We detect circles in the tag by first performing color
thresholding to extract white parts from the images. For the
thresholding, we trained the Gaussian Mixture Model on a
set of images taken under varying lighting conditions and
camera poses. The training set is obtained by taking images
of the tag and cropping regions of interest corresponding to
white segments of the image. An image and the output of the
model for this image are shown in Figs. 1 and 2, respectively.

Fig. 1: Image obtained with the stereo camera.

Fig. 2: GMM output from the image obtained with the stereo
camera.

III. ELLIPSE FITTING

Once we obtain the segmented image, we apply the
HoughCircles function from OpenCV with the option of
HOUGH GRADIENT and setting the threshold for the
Canny edge detection to 50 and the accumulator threshold
for the circle centers to a value dependent on how far the
quadrotor is from the centroid detected in the tag. If this
distance is greater than 10, we set the accumulator threshold
to 37, otherwise it is set to 60. These threshold values are set
empirically based on the observation that when the quadrotor

gets closer to the tag, circles can be more easily detected.
Thus we can increase the threshold as the quadrotor gets
closer to the tag. Since the stereo camera provides us with
two images, we choose the one from the left camera as the
detection of circles provides more consistent results. Fig. 3
shows the output of the ellipse fitting applied to the image
shown in Fig. 1.

Fig. 3: Ellipse fitting output from the image obtained with
Hough Circles. Note that the ellipse is detected on the image
on the right.

IV. TAG POSE

To estimate the camera pose, we use the Odometry infor-
mation that can be obtained from the Bebop. By subscribing
to the Odometry topic, we can obtain position and orientation
of the quadrotor in quaternion form. Finally, by applying
the function euler from quaternion, we then extract yaw,
pitch and roll values. Another option was to use PNP to
estimate the camera pose, but this method resulted in noisy
measurements.

V. RESULTS

Once the centroid in the tag is detected, the quadrotor is
driven towards it by applying a proportional controller with
saturation. The proportional gains for the x, y and z are set to
0.01. If the velocity inputs computed are above a threshold of
0.2, they are clamped at this value. Finally, a small velocity
command is given once the quadrotor comes very close to
the centroid of the tag in order to compensate for the small
offset of the camera position relative to the quadrotor’s center
position.

VI. PLOTTING IN RVIZ

We use Rviz to plot the bullseye marker and real-time
positions of the quadrotor. We use Blender program to
convert the bullseye image to a dae 3D model file. We then
publish the dae file as a mesh resource in a visualization
marker message to Rviz. We set alpha-transparent channel
to 0.9 to get the bullseye displayed in Rviz workspace. For
plotting the position of the quadrotor, the ROS TF transform



containing the position coordinates is broadcasted to our
program from Rviz every 0.1 sec. The position coordinates
of the quadrotor were generated using PNP.

Fig. 4: Bullseye Marker displayed in Rviz


