
ENAE788M Project 3b
Team Bouncing Rainbow Zebras

Erik Holum
Graduate Student

University of Maryland
Email: eholum@gmail.com

Edward Carney
Graduate Student

University of Maryland
Email: carneyedwardj@gmail.com

Derek Thompson
Graduate Student

University of Maryland
Email: derekbt@yahoo.com

Abstract—We discuss using a mounted, down facing camera
to detect, locate, and ultimately land on a target of circles
of known radii. Methods of image processing for circle/ellipse
detection are presented. As well as determination of position
relative the detected target using known properties of the camera.
We discuss our controller, and present results of testing on a
Bebop Quadrotor.

I. INTRODUCTION

In this project, we are given the task of landing a Bebop
quadrotor on the center of target made of black and white
concentric circles. We are provided with a stereo Duo3d
camera, which we mount on the nadir-facing side of the drone
so that it is as in line with the body fixed z-axis as much as
possible.

Using image data from the downward facing camera, we
use the OpenCV [1] to locate the the target in the image
frame and find the center of the target in pixel coordinates. We
discuss the process of deducing the location of the target in
real world coordinates using the processed image data. Finally
we implement a controller and provide real-world test results
of landing the drone on the target.

As per usual, unless otherwise mentioned all code is imple-
mented using ROS [2] and Python. Testing is done using the
Bebop Autonomy [3] package.

II. IMAGE PROCESSING AND CIRCLE FINDING

Due to the high contrast of the black-and-white bullseye tar-
get, we were able to perform a simple intensity thresholding on
the grayscale image returned from the downward-facing Duo
camera to create an accurate binary mask. This thresholding
was done by taking the average of the grayscale values above a
given threshold value, then setting any pixels that had a value
below this shifted average to zero, and any pixels above or
equal to the shifted average to full intensity. Figure 1 shows
the intensity values for a sample raw image of the target from
the Duo camera, note the large number of pixels with the
maximal intensity value; by simply setting pixels below the
maximal value it was possible to isolate the majority of the
target whitespace.

Two separate methods were then used to determine the
location of the bullseye target in the image based on the
binary mask. The first utilized OpenCV’s built-in Hough circle
fitting to attempt to isolate the any of the bullseye concentric

Fig. 1. Grayscale intensity histogram for a sample bullseye target image.

circles. The parameters for this fitting were set to be strict
and typically would only return a single circle centered at the
target. It was then trivial to export the center of the circle as the
target location. In the event that no circle was returned from
Hough circle fitting, an alternative method was used to provide
direction to the quadcopter. Built-in functions in OpenCV
were used to first obtain all contours in the binary image.
Small contours were removed, and the remaining contours
were processed to fit bounding rectangles to them. The largest
rectangle was then isolated, and the center of the whitespace in
that rectangle was found. This centerpoint was then exported
from the image processing function as the location of the
bullseye.

Hough circle fitting was typically more accurate and less
noisy, but would occasionally have periods when no circles
could be found. The implementation of the whitespace center-
point allowed us to continue to provide the quadcopter with
points for navigation during these periods until the target could
be accurately reacquired. The image processing method is
shown in Figures 2, 3, and 4.

III. POSE ESTIMATION

Ultimately, we found that the simplest approach was the best
approach for providing target position relative the quadrotor.
In particular, the radius of the circle returned by the image
processing algorithm was too noisy to reliably get major and
minor axes for an ellipse, or even a reliable radius of the
circle. However, using just the computed center of the circle,



Fig. 2. Raw Duo image sample.

Fig. 3. Hough circle fitting on masked image.

Fig. 4. Contours, bounding rectangles, and whitespace center on masked
image.

we are able to get reliable guesses for the direction of the
target. Ultimately, we are able to rely on the Bebop’s own
altitude estimation for Z, then use basic trigonometry and
similar triangles to produce a heading.

Let f be the focal length of the camera, (cx, cy) be the
center of the projected ellipse in pixel coordinates. And let
θx be the angle formed by [0, 0, 0], [0, 0, f ], and [cx, 0, 0].
Likewise, let θy be the angle formed by [0, 0, 0], [0, 0, f ], and
[0, cy, 0]. See figure 5.

Then, rather than computing the full estimated position, we
only compute the angles θx and θy as[

θx
θy

]
=

[
arctan 2 (cx, f)
arctan 2 (cy, f)

]
However, in this case we must deal with the reality of the

Fig. 5. Projection of the ellipse in the image plane, together with the center
of the image frame and the focal length.

distortion of the camera. Using the focal lengths fx, fy , and
the image center ux, uy returned by Kalibr, we can compute
the physical world values of θx and θy as[

θx
θy

]
=

[
arctan 2 (cx − ux, fx)
arctan 2 (cy − uy, fy)

]
.

Where (cx, cy) is the center of the circle in image frame
coordinates. Ultimately, we are able to accomplish the task of
landing on the target using only these two values, which is
discussed further in the Controller section.

After computing the angles θx and θy the detection node
sends these values in an array to the navigation node. When
the navigation node receives these values it uses the attitude
from the last odometry update to project the position of the
target on the ground plane using the equations below.

Ratt = Rot(φ, θ, ψ)

Rcam = Rot(θx, θy, 0)

Vproj = Ratt ∗Rcam ∗ [0, 0, 1]T

t = altitude/Vproj [2]

Xbullseye = [bebopx + Vproj [0] ∗ t, bebopy + Vproj [1] ∗ t, 0]
(1)

These prediction were input to the filter designed for the
gate traversal in project 3a to get a final filtered result. The
filter used a moving average of the last ten measurement
while discarding new measurements whose error was outside
a defined threshold.

IV. CONTROLLER

The control of the drone used the same state machine
implementation as project 3a to maintain the flexibility and
ability to extend the drones capabilities to longer and more
complex tasks. The navigation process was composed of a
total of 5 states. As the time was recorded from takeoff to
landing the first and last state were processes to takeoff and
land. Each state would send the takeoff or land command until
the bebop had registered it was in a state of hover or landed
respectively.

Between these processes the states composed of a point
navigation process, a hold position process, and a bullseye



navigation process. The point navigation would guide the
vehicle to the best estimate of the target with an altitude of
3 meters. The altitude was set high in order to get a wide
coverage with the down facing camera. At that altitude the
camera was able to see the majority of the test area so we
were confident that we would be able to see the target. The
point navigation ends when the bebop has reached the desired
view point, at which point it moves to the next state where
it is commanded to hold its position. This state waits until a
target position is confirmed before it enters the final navigation
state and moves towards the target. The bullseye navigation is
based on the point navigation function with a small change to
the altitude control. Instead of the desired altitude being the
final desired position of the target, it is a function of the lateral
error as defined below

Zdes =Min altitude+ Lateral error ∗ 1.5 (2)

This projected a cone upwards from the target so if the lateral
error was too great the vehicle would raise to keep the target in
the field of view and if it was directly over the target it would
lower to its minimum altitude. The exit condition for this state
used a check on the altitude, lateral error and lateral velocity.
If the altitude was within a threshold of the minimum atitude,
the lateral error was below a defined error and the magnitude
of the lateral velocity was below another defined threshold the
state would progress and a land command would be issued.

V. VIDEOS

1) Bullseye Landing: https://youtu.be/VdHa78PFRbo
2) Bullseye Duo: https://youtu.be/0qzBGMySmg8
3) Bullseye Rviz https://youtu.be/LC4EnzWDuw

VI. IMPORTANT LESSONS LEARNED

A. Limitations of Up board processing power

One of the biggest issues we faced on this project was
managing the processes running on the UP board. During test-
ing we noticed consistent overshoot of the target. The vehicle
tended to oscillate, never being able to lock in on the target.
We finally diagnosed the problem as latency between the
image processing and the navigation functions. The navigation
functions were receiving the data about the target with about
2 seconds of latency, so by the time the navigation reacted to
the sensor information in a certain location the vehicle had
already moved a significant distance.

We fixed the problem by moving all the processes onto
the board to minimize the amount of data being sent between
different processor and ended any extraneous processes such
as recording or displaying live data. This solution was enough
to allow the vehicle to complete its assignment but did not
fix the root of the problem. Going forward we will need to
identify the process that is either maximizing the processing
power of the board or taking more bandwidth then the board
can allow.

ACKNOWLEDGMENT

The authors would like to thank the professors for this
course, Nitin J. Sanket and Chahat Deep Singh, as well as
Dr. Inderjit Chopra.

REFERENCES

[1] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000.

[2] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009.

[3] “bebop autonomy - ros driver for parrot bebop drone.” [Online].
Available: https://bebop-autonomy.readthedocs.io/en/latest/index.html

https://youtu.be/VdHa78PFRbo
https://youtu.be/0qzBGMySmg8
https://youtu.be/LC_4EnzWDuw
https://bebop-autonomy.readthedocs.io/en/latest/index.html

	Introduction
	Image Processing and Circle Finding
	Pose Estimation
	Controller
	Videos
	Important Lessons Learned
	Limitations of Up board processing power

	References

