
Circular Bullseye
Mrinalgouda Patil

Alfred Gessow Center of Excellence
University of Maryland

College Park, Maryland 20742
Email: mpcsdspa@gmail.com

Curtis Merrill
Alfred Gessow Center of Excellence

University of Maryland
College Park, Maryland 20742

Email: curtism@umd.edu

Ravi Lumba
Alfred Gessow Center of Excellence

University of Maryland
College Park, Maryland 20742

Email: rlumba@umd.edu

Abstract—This paper examines the problem of target iden-
tification and pose estimation using a Bebop Parrot. First, a
method for identifying the target in multiple light conditions
is introduced, along with methods to reduce all noise and fals
detections. Then a simple pose estimation is presented that only
needs one point on the target to find the relative pose. Finally,
these two methods are combined and used to search, identify,
and land on the target.

I. INTRODUCTION/PROBLEM STATEMENT

The goal of this project to find and land on a circular bulls-
eye target. The target will be black and white (Figure 1a) and
the approximate coordinates of the target will be given relative
to the quadrotors starting position.

Fig. 1. The goal of this project is to find and land on a target.

For this project, the first task was to identify the relative
position of the target relative to the current quadrotor position.
Two different approaches were used for problem. First, a
simplified PNP was implemented to find the position of
the target to the quadrotor in the xy plane (only x and y
coordinates were obtained). In this approach, the z distance
to the target was considered to be the altitude (it was assumed
that the target was on the ground). Once the position of the
target was obtained, a closed loop 3D Controller was used to
move to the target position quickly.

II. TARGET IDENTIFICATION

In this section, the challenge of finding, identifying, and
calculating the position of the target are discussed. The main
challenge of this project was to find the position of the quad
relative to the target. A down-facing stereo camera was used
to search for the target. A simple color thresholding algorithm
was used to reduce the noise in the image and allow the

circles on the bullseye to be identified.

To identify the target, the python function HoughCircles
was used. This circle took in a grey scale image (the bottom-
facing stereo camera was a greyscale camera) and fits circles to
features in the image by using the gradient of the pixel value.
The user can also specify other inputs, including the minimum
and maximum radius of the circles (in pixels), the minimum
distance between the centers of two circles, and a threshold
for how ”circular” the circles need to be (how many possible
false detections will there be). The output of the function is
the center and radius (in pixels) of all circles found.

A. Color Thresholding

Originally, HoughCircles was tried on the raw image com-
ing from stereo camera. However, this resulted in many false
detections, as seen in Figures 2 and 3 below.

Fig. 2. Raw camera image of the ground.

Fig. 3. Without any thresholding, HoughCircles will pick up extraneous
circles.



First, the input parameters for the HoughCircles function
was adjusted to attempt to reduce the noise. Adjusting the
minimum and maximum radii for the circles helped, but there
were still many false detections, especially because there
were circular features on the carpet.

Despite how the input parameters were adjusted, these
circles would show up and give false detections. Therefore, a
more robust method was desired, which involved thresholding
the image to only show the bullseye. This was done by taking
all pixel values that were below a certain value (between 0 and
255), and making them all zero (black), as seen in Figures 4
and 5.

Fig. 4. With a proper threshold, only the target will appear, making it easier
to use Hough Circles.

Fig. 5. With a proper threshold, only the target will appear, making it easier
to use Hough Circles.

This removed all of the noise from the image, and allowed
HoughCircles to only capture the circles given. In fact, the
input parameters for HoughCircles could be relaxed, as there
is no chance of false detection as long as the thresholding is
tuned properly.

The thresholding values were obtained roughly 24 hours
before the live demo to ensure that the lighting conditions were
as close to testing conditions as possible. The thresholding
values were found for 25, 50, 75, and 100 percent lighting.
Zero percent lighting was attempted, and the thresholding
would work if the quad was close to the target, but if it was
very high or at an angle it was able to consistently identify the
target. If the thresholding value was lowered to where it did,
the background of the mask wouldn’t remain black and there

would be many false detections. Therefore, only 4 lighting
conditions were truly found.

B. Calculating Pose - Simple Method

After obtaining a clean target image, the pose of the
quad relative to the target could be found only using the
center (with certain assumptions). This simple method was
implemented first to check how robust and accurate it would
be.

To find the pose of the quad relative to the target using only
the center, similar triangles were used. First, the field of view
of the camera was desired, as shown in Figure XX.

Fig. 6. The field of view of the camera is used to calculate the physical
distance of the image.

The field of view was found in both X and Y direction by
holding the quad at 1m and measuring what was visible on
the camera. With the field of view, the physical distance could
be related to what the camera frame saw using the following
equation (there is a similar equation for Y).

Xphys = Altitude ∗ tan(FOVX/2) (1)

If the physical distance from the edge of the image to
the quad was known, then the x and y distances from any
point on the image could be calculated using the pixel value
of the center of the circle in the camera frame(given by
HoughCircles) and the resolution of the camer.

The physical distance from the camera to the target is
calculated using the following equation, where xcenter and
ycenter are the pixel values given by HoughCircles.

X = Altitude ∗ tan(FOVX/2) ∗ ((xcenter − 160)/160) (2)

Y = Altitude ∗ tan(FOVY /2) ∗ ((xcenter − 120)/120) (3)

For this method, xcenter and ycenter were calculated by
averaging the center locations for the left and right camera.
The altitude was determined by using the odeometry data
published during flight. After calculating the positions in the
camera frame, they need to be moved into the quad body
frame so proper velocity commands can be given. For us, this
involved switching X and Y and then multiplying Y by -1.



However, this will depend on how the camera is mounted.

This method is simple, easy to implement, and seems to
be robust at several different lighting conditions. The two big
assumptions made in this method are that pitch and roll are
negligible, and that the altitude value given by the odometry
is reasonable.

The first assumption we felt good making, as we can ensure
that this is close when we collect data to send to the controller.
A quadcopter cannot maintain hover with a nonzero pitch
and roll, so the only times we would see large pitch and roll
values would be if we were flying very fast. Our controller is
tuned to such a way that don’t move too fast (more on this
will be given later), and once we arrive near the target we wait
a half second for the quad to stabilize before taking the inputs.

For the second assumption, we found the controller is robust
even if the altitude is not that accurate. The altitude is used
to determine the scale factor of how far it needs to move - it
doesn’t influence the direction (unless the altitude is negative).
Therefore, the quad will either overshoot or undershoot the
target if the altitude is not exact. This just means that it will
take longer to lock onto the target, but it will still eventually
get to the same place, as long as the altitude error is reasonable
(not negative, and within .5-.8m).

III. CONTROLLER

The controller used in this project is the same one created
for Project 2. The controller is a closed loop controller that
uses feedback from bebop autonomy during flight. Since the
controller was introduced in detail in the previous report, this
paper will provide a brief summary of how it works.

The controller is given a waypoint, which includes a ∆x,
∆y, ∆z, and ∆ψ (although for this project, yaw is not used).
From this information, it follows these steps:

1) The desired waypoint is converted from the local frame
to the global frame set by the first odometry message.

2) The raw odometry data is converted into the global
frame. This only affects the velocities in x and y (the
quad can only sustain steady pitch and roll angles of 0),
which were transformed using the yaw angle.

3) The error in position and orientation (just yaw) is found
in the global frame. Since the desired velocity was 0,
the velocity itself was the change in error vs. time.

4) The new control input was calculated using the gains
Kp and Kd and the position and velocity errors.

5) Steps 2-4 were repeated until the quad arrived at the
waypoint.

From last project to this project, several updates were
made to the controller, specifically dealing with tuning. Last
project the controller was only used to fly small distances
(¡1m at a time) and since this project could involve a large
initial flight distance, we wanted to tune the quad for a larger
distance. This was smart, as our original gains had a high

reliance on Kp compared to Kd, which caused a very large
overshoot when the waypoint is very far from the initial
point. Our new gains had a higher Kd compared to Kp,
drastically reducing the overshoot. These gains still work
well for smaller distances.

Another change made to the controller was that we added
in a speed cap. As mentioned above, for very large initial
errors (large waypoints), we would have very large initial
velocities that would cause an overshoot. Increasing Kd
helped, but didn’t completely fix the problem. We found that
if we artificially capped the velocity input to the quad, this
helped almost eliminate overshoot. This also helped the quad
maintain a relatively level orientation (pitch and roll close to
0), which helps us with our methods for calculating the quad
position relative to the target.

The second change made to the controller was a new set of
gains was introduced for the z direction. We noticed that our
movement in the z direction would take a very long time to
converge, and over that time the quad would drift in x and y.
Therefore, we increased both Kp and Kd, while making Kp
higher than Kd, while verifying that there was a very small
overshoot. During our mission, we change altitudes while
searching for the target, so moving faster in z can significantly
speed up our run.

IV. INTEGRATION

There were two python codes, the target identification
code and the controller, that needed to be integrated. It was
decided that a method similar to the approach taken in Project
3a would be used. Although the performance on Project 3a
was lacking, it was determined that the main cause was the
inability to recognize the gate, and if that was fixed, the
method itself would work.

This method involved having the color thresholding code
take in the images from the duo camera (right and left camera
images), and constantly publish the x and y positions of the
target relative to the quad (we want the target relative to the
quad so that we can use these as waypoints for the controller).
The controller would take this waypoint, move to it (while
ignoring the continuous update of waypoints), and then get
the next waypoint only after the first trajectory was completed.
The target identification code would also send a flag along with
the waypoint. If this flag was set to 0, the controller should
fly to the waypoint, but if the flag is set to 1, the quad is on
top of the waypoint and the controller should land the quad.

V. MISSION PROFILE

This section will contain a brief overview of the mission
profile, or how the quad will attempt to find and land on the
target. First, the quad will takeoff from the given position
and fly to the given ”position” of the target (the mean of
the gaussian distribution for where the target will be). Next,
the quad will ascend from the takeoff height to a search



height which is an input parameter (usually around 1.5-2m).
Next, the controller wait for a waypoint from the target
identification code. At this altitude, with our cameras large
field of view, we are normally able to identify the target that
is roughly 1.5m in each direction. However, if it is unable
to identify the target it will move up another half meter,
expanding the area that it can visualize the target to close to
2m. After identifying the target, the controller will fly to the
given set of waypoints and then lower down to 1m.

Next, the controller will get the waypoint from the target
identification code, move there, and receive another waypoint.
This process is repeated until the target identification code
sends a flag telling the controller to land.

VI. RESULTS

During the test, the location of the target was given as 2.7m
in x and 1.6m in y away from the original drone location
with ± .6m in both x and y. Our original search used the
mean values and flew there first, before moving to 1.8m for
our search. We were able to correctly identify and land on
the target in roughly 50 seconds. Next, we tried searching at
1m instead of 1.8m. Because of the wide field of view, we
were still able to find the target. Because we didn’t take time
to move up and down, we were able to reduce our time to 25
seconds.

For the next 10 minutes of testing time, we attempted to
improve our speed by lowering the tolerances for both the
target identification (when should we land) and the closed
loop controller (when have we hit the waypoint). With these
methods, we were able to reduce our time to 17 seconds.

VII. CONCLUSION AND LESSONS LEARNED

One major conclusion that we learned from this project was
that lighting matters. We learned this a little in Project 3a, but
we had several other issues with that project. In this project
we were able to see that even waiting 1 hr from 5 pm to 6
pm can change the lighting to where the thresholding values
need to change. One way to get around this would be using
an adaptive thresholding technique, which would be especially
helpful when reducing glare.

REFERENCES

[1] ENAE788 Class 5 Slides
[2] Some Code taken from learnopencv.com/rotation-matrix-to-euler-angles/


