Project 4a: Stereo Visual Odometry

Team 6: Noob Quaternions

using 2 late days

Prateek Arora
Masters of Engineering in Robotics
University of Maryland, College Park
Email: pratique @terpmail.umd.edu

I. INTRODUCTION

The aim of the project is to compute the 3D trajectory of
the quadrotor using a images from downward facing stereo
camera.

II. DATA COLLECTION

Images from downward facing stereo camera of the quadro-
tor moving in helix trajectory were bagged. We have used the
bag provided by team BRZ for this project.

III. IMPLEMENTATION DETAILS

The pipeline is described in detail in the following subsec-
tions:

A. Stereo Visual Odometry using optical flow and depth

In this approach, linear and angular velocities are computed
using the optical flow equation. These velocities are then
integrated to get pose of the quadrotor. Another variable
necessary to compute the velocities is the depth which is
computed from the stereo camera.

B. Feature matching and tracking using Optical flow

First step towards calculating optical flow between current
frame Z; and next frame Z,;; is to get reliable features.
We use Opencv function goodFeaturesToTrack() to extract
Shi-Tomasi features in frame Z;. GoodFeaturesToTrack()
works best for out case considering trade-off between speed
and accuracy.

Let (x¢;, yt,) and (X(t+1),, ¥(¢+1),) denote the coordinates
of features in frame Z; and Z;; respectively. Since the tracker
is not perfect there is some drift in the coordinates of features
in the frame Z,,; which results in poor 3D velocity estimates.
To ensure that we get accurate coordinates of features we
use RANSAC to prune poor matches. The model chosen for
RANSAC is homography between Z; and Z;; and the model-
specific loss function is the difference between the (x:,,y:,)
and warped (X(t+1),5Y (t+1),)- Now, that we have better feature
matches, all that is needed to get linear and angluar velocities
is depth.

Abhinav Modi
Masters of Engineering in Robotics
University of Maryland, College Park
Email: abhil625@umd.edu

600

Figure 1: Klt tracker with reset after 5 frames

1) Stereo depth: Opencv function StereoBM _create()
is used to estimate pixel-wise disparity from stereo camera.
Using equation|[I] depth can be easily estimated from disparity.

:Bxf

=7

ey

where d,B,f,Z are the disparity, baseline, focal length and
depth respectively.

Getting depth from disparity map is not sufficient to
compute robust VO since features with very small values
results in absurdly large depth values. To remedy this, mean
of the disparity values is computed for those pixels where the
disparity is greater than a certain threshold. This assumption
hold true because the downward facing camera is looking
at a plane and this gives us particularly robust results. Now
that we have both depth and optical flow, we compute 3D

Figure 2: KIt tracker with reset after 20 frames

velocities.

2) Pose Using Dead Reckoning: After obtaining optical
flow and depth we use linear least squares to compute the
velocities as given in the equation 2]

Va

Vy
- [2] |V o

Y fg(l’,’y,Z) Q:c

Q,

Q.
where fi = [0 £ xy (-1+2%) y|and fo =
0 % £ (-1+y?) -y —z| These velocities are

finally integreated to get 6 DOF pose as seen in figure [3]

IV. DISCUSSION AND CONCLUSION

A. KLT optical flow

Optical flow estimation using KLT tracker is prone to drift
due to abrupt illumination change. To counter this, the features
are tracked for a couple of frames (5 frames in our case as
seen in figure 2) and then reset. After the reset new features are
extracted from next frame and these new features are tracked.

B. Disparity

Since disparity is inversely proportional to depth, small
values of disparity results in insanely large values of depth. To
rectify this, mean of the disparity values is computed for those
pixels where the disparity is greater than a certain threshold
(threshold=0.001)

1.5

= Our SVO
— bebop_odom

1.0

0.5

0.0

-0.5

X axis (camera coordinate system)

-1.0

-1.5
0

time

2.0

=— Our SVO
—— bebop_odom (|

15

Y axis (camera coordinate system)

250
time

3.0

= Our SVO
= bebop_odom

2.5

2.0

15

1.0

0.5

Z axis (camera coordinate system)

0.0

055 50 100 150 200 250

time
Figure 3: Comparision of x axis, y axis and z axis vs time
graph of the Helix trajectory computed using SVO and bebop’s
odometry

V. OUTPUTS AND RESULTS

Here is the video output with feature detection in both
left and right stereo images and trajectory of the quadrotor.
StereoVO-rviz.mp4

https://drive.google.com/file/d/1cSS6_X2E4wZrvL58KsvR41BCVPceOtSz/view?usp=sharing

— bebop_odom
— oursvo

Figure 4: Final Helix trajectory plot. Blue is bebop’s odometry
data and green is pose from SVO

	Introduction
	Data Collection
	Implementation details
	Stereo Visual Odometry using optical flow and depth
	Feature matching and tracking using Optical flow
	Stereo depth
	Pose Using Dead Reckoning

	Discussion and Conclusion
	KLT optical flow
	Disparity

	Outputs and Results

