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Abstract—This report presents the implementation and results
of an optical flow odometry and pose estimate using a greyscale
stereo down facing camera. The stereo camera is used to estimate
depth, and optical flow between frames is used to estimate linear
and angular velocity.

I. PROBLEM STATEMENT

The aim of this project is to estimate vehicle position
and orientation using only the images from a downward
facing stereo camera. Optical flow algorithms must be used to
estimate linear and angular velocities and point depth must be
estimated using the stereo camera pair. The resulting velocities
are integrated over the duration of the flight to generate
position and orientation estimates which are compared to the
Bebop’s on board estimate.

II. FEATURE DETECTION AND TRACKING

Optical flow vectors are calculated using the iterative Lucas-
Kanade method with pyramids. A set of points in generated
in a grid and used to seed the vectors, this helps keep a
wide distribution of valid optical flow vectors across the entire
image. The more features are generated, the more points there
are to calculate movement, however it also requires more
processing power. By generating a grid away from points that
don’t contain useful information such as near the edges of the
camera that only captures a part of the camera assembly itself
we can increase the density of points without comprimising
processing power.

Matches which have a movement distance of greater than
15 pixels are thrown out. This effectively removes erroneous
matches that would otherwise ruin optical flow calculations.

Next, the optical flow vectors ẋ and ẏ are calculated as the
difference in x and y coordinates between the last and current
images divided by the time elapsed between frames. The frame
time is calculated as a rolling average (low pass filter) of the
previous five frame timestamps.

III. STEREO DEPTH ESTIMATE

In order to calculate optical flow, some information about
the world must be known to relate image plane projections
to real world measurements. In this project, the distance from
the camera to a feature point (Depth), is used as the bridge
between the projected image and the world. To estimate depth
of a feature point, a Stereo camera pair with a known base
distance B and focal length f is used to triangulate a point
in both images. Reference [?] contains a detailed explanation
of the method used to estimate depth from a stereo camera
pair. Specifically, a special case of stereo cameras where the

cameras are pointing in a parallel direction to each other and
their baseline and have the same focal length. This detail is
used to greatly simplify the math and implementation, and
results in the simple formulation:

Z =
fB

d
(1)

Where Z is the depth of the feature point and d is the disparity,
measured in pixels, between the left and right stereo images.
Additionally, the simplifying assumption above guarantees
that the epipolar line between the left and right camera is a
horizontal line in the image. This simplifies implementation
by constraining feature point matches to one row in the
corresponding stereo image.

For a given feature point, the disparity d must be found
by comparing the position of the point in the left and right
stereo image. For a greyscale image, this is completed by
comparing the intensity of the feature point and surrounding
pixels in the left image to potential matches in the right image.
Potential matches are evaluated using a sumsquared error of
differences in pixel intensity for a defined window of pixels
around the feature point. The size of the window can vary
based on images, but generally smaller windows result in a
faster algorithm but are prone to noise.

Our implementation constrained the right window search
area to only allow disparity results which make sense for
the application of odometry on a quadrotor. For example, the
disparity between left and right images must always result in
a positive disparity, ie the right image shows the same feature
point to the left of the projection in left image. As such, it
is a waste of computation time, and allows erroneous data to
search for feature point matches in that part of the image.
Additionally, the quadrotor in flight will always be at least
0.5 meters above the ground when navigating. As such, the
maximum disparity can be limited to about 20 pixels. These
two facts reduce the computation time of searching for a match
drastically. Note that changing the base distance or focal length
would change the maximum disparity for a particular setup.

A set of test images were run to prove out the functionality
of our stereo image depth function stereoDepth.py . A common
example of stereo image processing is presented in figure1
below, showing left and right original stereo images of Aloe.

These images were run through the stereo depth algorithm
at three different window sizes W = 1, W = 15, and
W = 25. The first two results are shown in figure ?? below.
The images show that depth is not well estimated via an
exceptionally small window size of one. Instead, a window



Figure 1: Left and Right Aloe Images

size of 5 generated a good depth estimate, but with some noise
in the results.

Figure 2: Left: Diagram of angular contact bearing [?]. Right:
Disassembled bearing

Comparatively, a very large window size of 25 yields a
nearly perfect depth image, but takes an order of magnitude
longer to compute. Figure 3 shows the excellent results using
a large window size.

Figure 3: Aloe Depth with Window = 25

For the purposes of optical flow on a quadcopter, processing
time is of the utmost importance, which prompted a secondary
approach. Because it is useful to calculate disparities at points
which have optical flow information, we simply use the moved
positions of the grid points in the current frame as the seed for
another instance of the iterative Lucas-Kanade method. These
points on the current image are compared with the right camera
image, returning optic flow vectors between the two cameras,
which can be easily processed for horizontal discrepencies.

IV. RANSAC

Real world stereo images in flight are prone to noise in the
stereo depth calculation. In order to remove erroneous depth
values, a RANSAC algorithm was written to filter out bad
depth points. The filtering works on the assumption that all
depth estimates should lie on a plane, ie the ground.

This RANSAC implementation requires no tuning and is
very simple. Given a set of x,y,z points, 3 are chosen at
random N times. These three points describe a plane, and the
distance from every point in the set to the plane is found. The
median of these distances is saved as the score of the plane.
The median is used instead of the average to avoid skewing
towards outlier points. The plane with the lowest score is used
to then return some number of the closest points. This helps
exclude erroneous points.

V. FINDING POSITION AND POSE

The feature points and depth estimates are processed
through the optical flow equation shown below. All of the
feature points are combined in this formulation and the optimal
solution for all optical flow points is found.
ẋ1
ẏ1
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A linear least squares solver is applied to the equation above
to solve for the best solution of linear and angular velocities
to satisfy the above equation.

VI. ESTIMATION OF ODOMETRY

Once we obtain linear and angular velocities in camera
frame, we compute the pose of the camera. This is done
by integrating the velocities wrt δt i.e the time between two
consecutive image timestamps. Since the angular velocities of
the drone is zero, the orientation of the drone is also zero. We
hence integrate only the linear velocities.

VII. RESULTS

We visualize the odometry that we get from optical flow (in
red) and the bebop odometry (in blue), in Rviz. We observe
that the odometry trajectory from optical flow closely follows
the ground truth trajectory obtained from bebop odometry. Fig
5. and Fig 4. show the side and top views of the helical
trajectory. Fig 6. , Fig 7. are different views of the straight
line trajectory.

Figure 4: Helical Trajectory - 1



Figure 5: Helical Trajectory - 2

Figure 6: P2P Trajectory - 1

Figure 7: P2P Trajectory - 2

VIII. LESSONS LEARNED

• Optical flow is good at linear estimation, but bad with
angular estimation.

• Processing time/compute power is limited and requires
optimized code.

• Additional optimization is required to get real time process-
ing for use in flight.

• Stereo estimation using the window method is best for large
resolution large baseline stereo images but is not fast enough
or accurate enough for our application.

Figure 8: Helix Optical Flow

Figure 9: P2P-Optical Flow

• Due to missing frames as a result of synchronization issues,
we observe our output velocity to be noisy at times. This is
primarily due to a large optical flow vector being computed
when frames are skipped.

IX. CONCLUSION

Stereo visual odometry is less accurate when compared to
the odometry computed from the sonar data in the bebop. This
is evident, both visually from the odometry plots that we obtain
as well as from the optical flow ouputs.
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