
ENAE788M Project 4a
Team Bouncing Rainbow Zebras

Erik Holum
Graduate Student

University of Maryland
Email: eholum@gmail.com

Edward Carney
Graduate Student

University of Maryland
Email: carneyedwardj@gmail.com

Derek Thompson
Graduate Student

University of Maryland
Email: derekbt@yahoo.com

Abstract—This project present results from determining po-
sition and orientation of a platform with a mounted stereo
camera. Results are presented for altitude using stereopsis, and
for full position and orientation using optical flow. Data from two
flight profiles were captured and processed using the techniques
described below and compared to onboard odometry captured
by the same system. Overall performance characteristics as well
as significant lessons learned from implementation are discussed.

I. INTRODUCTION

In this project, we are given the task of determining position
and orientation of the Bebop drone using optical flow and
stereopsis from the bottom-facing Duo camera. Data was
captured via ROS bags for two unique flight profiles: (1) a
straight-line point-to-point flight path, and (2) and helical flight
path (similar to the flight pattern for Project 2. This data
included the Bebop odometry and the Duo camera capture;
this was used to develop and test against.

Several OpenCV libraries [1] are used for feature detection
and tracking between subsequent frames to determine trans-
lational velocity and angular rates, which are then integrated
with respect to time to obtain position and orientation. Differ-
ences in feature detection between the left and right images is
used to determine the altitude of the Bebop directly at every
timestep.

Unless otherwise mentioned all code is implemented using
ROS [2] and Python. Testing is done with ample usage of
Python Jupyter notebooks.

II. ALTITUDE FROM STEREOPSIS

We use feature detection and matching to compute altitude
from the left and right images of the camera. We experimented
with different types of detectors offered by the OpenCV li-
brary, including BRIEF , FAST , ORB, and the Shi-Tomasi
detector. In general what we found was that quality was
far more important than quantity when it came to altitude
detection - since we found matches to have a great deal of
noise in them.

Our first thought, given that we had already implemented it,
was to try to use RANSAC to find the true altitude. We recall
that given base distance, B, focal length, f , pixel distance d,
then the altitude Z is given by,

Z =
fB

d
=⇒ d =

fB

Z
.

With this simple model and method of error checking, it was
trivial to test using our RANSAC implementation to remove
outliers. However, this was wildly unsuccessful do to the large
differences in distance between matches. basically every subset
of points produced an extremely different value for Z. We
abandoned trying to use RANSAC to filter outliers.

In the end, we used the ORB matcher with brute force
detection, but only on a limited set of high quality features.
We found ORB to be slightly slower, but producing far more
reliable features than other detectors in CV2. The brute force
matcher was handy, as it gave estimated quality distances for
matched pixels. We applied two basic filters for these matches,
[x, y] and [x′, y′]:

1) y and y′ must be approximately equal (they must lie on
the save line).

2) We only take the 20 closest matches as determined by
the brute force matching algorithm.

The results of feature detection and matching are presented
in figures 1 and 2. Given our top 20 matches and distances
di, we compute our altitude as

Z =
1

20

∑
i

Bf

di
.

Fig. 1. Feature detection for left and right frames for stereopsis.

III. POSITION/ORIENTATION FROM OPTICAL FLOW

The linear and angular velocities for the Bebop were ob-
tained via optical flow by first extracting the unique identifying
features in the first of two subsequent frames. In terms of

Fig. 2. Feature matching between left and right frames for stereopsis.

feature detection, we found that speed and quantity tended
to be more important than quality. Given the testing done
previously for Z, we opted to use the Shi-Tomasi detector
implemented in OpenCV’s goodFeaturesToTrack function.
A sample of the feature tracking done between subsequent
frames during an altitude descent is shown in Figure 3; as
expected for an altitude descent, the features here appear to
radiate outward from the center of the image.

Fig. 3. Feature tracking from subsequent frames using optical flow during
an altitude descent.

Thus, given two sequential images Ii and Ii+1 and feature
points p̄i, we use OpenCV’s built in iterative Lucas-Kanade
tracker calcOpticalF lowPyrLK function to produce flow
coordinates in Ii+1, p̄i+1. Given these features and flow points,
together with a time stamp ∆t, we compute an estimate for
pixel velocity at each point as,

[
ẋ
ẏ

]
i

= ˙̄pi = p̄i+1 − p̄i.

[
ẋ
ẏ

]
=

[
f1(x, y, Z)
f2(x, y, Z)

]

Vx

Vy

Vz

Ωx

Ωy

Ωz

 (1)

Where f1 and f2 are given by the matrix:[
− f

Z 0 x
Z xy/f −(1 + x2/f) y

0 − f
Z

y
Z (1 + y2/f) −xy/f −x

]
Note that A will convert conventional units (e.g. m/s) to pixel
velocities.

Then, given 3 different tracked pixel velocities from the set
of ˙̄pi, we can solve for the 6 element camera velocity at time
i using a system of 3 linear equations (of two variables each).
Namely, let

A =

f1(x1, y1, Z)
f2(x1, y1, Z)
f1(x2, y2, Z)
f2(x2, y2, Z)
f1(x3, y3, Z)
f2(x3, y3, Z)

Be a matrix with three chosen pixel velocities computed from
flow points. Then we have a simple system of equations

ẋ1

ẏ1
ẋ2

ẏ2
ẋ3

ẏ3

 = AX

where X is the velocity state vector.
Since optical flow calculations are inherently noisy, we had

to use some method to separate inliers from outliers in our
flow coordinates in order to produce a reasonable estimate
of the state, X . We used a 3-Point RANSAC to iteratively
test randomly-selected models. The model was fit using linear
least squares. We initially were using a linear equation solver,
but found that least square fitting was more reliable (no
singluarities!). Errors were computed using a simple vector
2-norm. E.g., given a point [x, y], computed pixel velocity
[ẋ, ẏ], and solved state X , the error is given by,

e =

∥∥∥∥[ẋẏ
]
−
[
f1(x, y, Z)
f2(x, y, Z)

]
X

∥∥∥∥ .
An inlier for our RANSAC model is defined as any point with
an error below a certain threshold, et. A sample frame with
inliers and outliers is provided in figure 4.

The result of this process was a reliable velocity vector
X . Position and orientation for the Bebop were then obtained
by integrating the linear and angular velocities at each time
step. The time step was taken as the difference between the
second and first frame for each subsequent pair of frames. This
process was repeated for every frame in the data set, with the
result being a full flight profile for the position and orientation
of the Bebop.

Fig. 4. Inliers and outliers of matched optical flow points computed using
our RANSAC implementation. Inliers are green, outliers are blue.

IV. RESULTS

Results for the altitude estimation from stereopsis for both
the point-to-point (P2P) and helix trajectories can be seen in
Figures 5 and 6.

Results for the position and orientation estimation from opti-
cal flow for both the point-to-point (P2P) and helix trajectories
can be seen in Figures 7 - 10. Three-dimensional comparisons
of the trajectory from the Bebop odometry and the optical flow
are shown in Figures 11 and 12.

Fig. 5. Altitude estimation from stereopsis - Helix.

V. VIDEOS

Point to Point Trajectory:

1) Image Processing: https://youtu.be/aCv6CwIvVEo
2) Rviz Positioning: https://youtu.be/qpy5V5gLPhI

Helix Trajectory:

1) Image Processing: https://youtu.be/xfIgtudUcM
2) Rviz Positioning: https://youtu.be/WnD6Io0eyB8

Fig. 6. Altitude estimation from stereopsis - P2P.

Fig. 7. Position estimation from optical flow - Helix.

Fig. 8. Position estimation from optical flow - P2P.

https://youtu.be/aCv6CwIvVEo
https://youtu.be/qpy5V5gLPhI
https://youtu.be/xfIgtud_UcM
https://youtu.be/WnD6Io0eyB8

Fig. 9. Position estimation from optical flow - Helix.

Fig. 10. Position estimation from optical flow - P2P.

Fig. 11. 3D trajectory comparison for optical flow and Bebop odometry -
Helix.

Fig. 12. 3D trajectory comparison for optical flow and Bebop odometry -
P2P.

VI. IMPORTANT LESSONS LEARNED

A. Processing Requirements

It was clear (although somewhat unexpected) from pro-
cessing and testing on our local workstations that without
significant consideration for constructing fast, lean code that
the processing time for optical flow can be substantial. Our
initial implementation implementation ran at 1 Hz and worked
remarkably well when post-processing the data. This was also
on our workstations which included 32GB of RAM and Intel
i7 Processors (8th gen). Once we had a functional algorithm,
this project turned into turning down dials and breaking things
until we could run at reasonable rates with ok data.

Given more time, there are many places to make improve-
ments. At this point primary bottleneck is in our implemen-
tation of our 3-point RANSAC algorithm. This slowdown
could be substantially reduced in two ways: (1) vectorizing
various sections of the algorithm (especially in the error
determination), and (2) relaxing the algorithm implementation.
Due to time constraints, we focused primarily on the second
method by reducing the number of iterations, increasing the
error tolerance to call a point valid for a given model, and
reducing the total number of valid points required to determine
that a model fits a set of data. It works, but does not nearly
have the performance and reliability as an implementation with
no Hz constraints.

Even now, we are heavily constrained in our ability to get
reasonable data when running on an UP board. We will have
to make significant changes to get this to run reliably at higher
data rates.

B. Parameter Sensitivity

We have a huge number of parameters available to us to
tune, including for feature detection, matching, optical flow,
RANSAC, etc. While some of these parameters are simple to
understand or have minimal impact on our computation, others
are tremendously sensitive and drastically affect performance.
In trying to increase the frame rate processing time, as mention
above, we found that increasing by even a single Hz required
re-tuning many of the parameters we had.

C. Noise in Readings

The raw measurements obtained from both stereopsis and
optical flow were seen to suffer from substantial noise. Even
with the implementation of the moving average for stereopsis
and RANSAC algorithm for optical flow as detailed above, the
results were still relatively noisy and suffered from some drift
and lag. As such, prior to actual implementation and use on
the Bebop, we would need to improve the filtering done for
both of these methods. It may be necessary to either increase
the strictness of the RANSAC implementation (although this
would require improvements in the RANSAC processing re-
quirements as discussed below) or an additional filter to further
smooth or average the readings obtained from stereopsis and
optical flow. It should be noted that these measurements could
likely be combined with other pose and orientation estimation
measurements (e.g. from the IMU and/or accelerometer) via an
Unscented Kalman Filter to improve the net state estimation.

D. Frame Differences

Although this is similar to a lesson learned in previous
Projects, it is worth noting that any frame differences between
the Bebop odometry definition and the convention used for
an optical flow implementation can result in apparent data
discrepancies, even when the source of the discrepancy is
actually the result of axes swapping or values being negative
in one definition as opposed to another. We encountered this
in our initial implementation of optical flow and spent a non-
trivial amount of time examining the code for fundamental
logical flaws. After reviewing the optical flow diagrams, we
came to the conclusion that the definitions of the x and y
coordinates for the Bebop and our implementation of the
optical flow equations was reversed; simply swapping the
coordinates immediately yielded significantly better results.

ACKNOWLEDGMENT

The authors would like to thank the professors for this
course, Nitin J. Sanket and Chahat Deep Singh, as well as
Dr. Inderjit Chopra.

REFERENCES

[1] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000.

[2] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009.

	Introduction
	Altitude from Stereopsis
	Position/Orientation from Optical Flow
	Results
	Videos
	Important Lessons Learned
	Processing Requirements
	Parameter Sensitivity
	Noise in Readings
	Frame Differences

	References

