Stereo Visual Odometry

Mrinalgouda Patil
Alfred Gessow Center of Excellence
University of Maryland
College Park, Maryland 20742
Email: mpcsdspa@gmail.com

Abstract—This paper examines the problem of visual odometry
- estimating the pose of a moving camera relative to a static
ground. First, two different methods for estimating depth are
described. Next, a method for estimating optical flow using
feature matching and RANSAC is described. Finally, these two
methods are integrated and applied on two real trajectories flown
by a bebop drone.

I. INTRODUCTION/PROBLEM STATEMENT

The goal of this project is to compute the 3D camera
trajectory of a stereo sensor. A downward facing DUO camera
is attached to our quadcoptor and the images from each camera
(right and left) can be used to calculate instantaneous height
at one time. By comparing the image from one camera at time
t to an image from the same camera at time t-dt, the optical
flow can be computed which can be used to solve for the 3D
world velocities using the following equation.

Vx

-1 x) Wy

[m} |z O1 7 xy —(1+4+2z*) y gZ
Y - ¥ 1 2 _ _ X
Qz

(1

In this project, two trajectories were flown with our quad:
a straight line and a helix. The method used above was
used to compute the estimated trajectory for each run, and
was compared to the bebop odometry. Two videos in Rviz
were created for each trajectory - the first video contains the
estimated trajectory vs. the bebop odometry and the second
contains detected features at each frame.

II. HEIGHT CALCULATION

The first major step in calculating the 3D camera trajectory
is calculating the depth at each time step using the stereo
camera. Because we have two images with very similar
features of view, we can find the same feature in both images.
Based on the pixel difference between the feature location in
each image, and since the camera planes are parallel with a
known offset, the depth can be calculated using the following
equation.

fB

= — 2
disparity @

- USING 2 LATE DAYS

Curtis Merrill
Alfred Gessow Center of Excellence
University of Maryland
College Park, Maryland 20742
Email: curtism@umd.edu

Ravi Lumba
Alfred Gessow Center of Excellence
University of Maryland
College Park, Maryland 20742
Email: rlumba@umd.edu

,where f is the focal length of the camera (200 pixels), B
is the offset between the camera (.03m for use), and the
disparity is the pixel difference between the same feature in
the difference images.

To summarize, the disparity, or pixel difference between the
same image in the two difference frames, is the only variable
needed to calculate the depth. The next two subsections will
go over two different ways attempted to find the disparity.

A. Sliding Window Method

The first attempt at calculating the disparity was using the
sliding window method. First, features are identified in one
of the camera images (we choose the left image), as seen in
Figure 1. This feature identification was done using SIFT.

Fig. 1. After the intial features are found (blue), each feature has a box fit
around it.

Next, we place a window around this feature (Figure 1),
and store the pixel values at these points. Then, we recreate
the same window in the right image, and try to slide it along
the epipolar line to find the feature. Since the cameras are
mounted parallel, this should just involve sliding the window
along the x axis of the image frame, as seen in Figure 2.

Fig. 2. A window is moved across at a constant y to attempt to find the
feature.

Each time the window is moved, the error for each pixel
is calculated by squaring the difference between the left and
right window. This error is then summed up and stored along
with the disparity (step size * step number), and the process
is computed a certain number of steps. After all of the steps,
disparity with the lowest error is assumed to correspond to
the actual feature, and is used to determine the height at that
feature. After all feature matches are found, only a subset of
those are used to calculate the depth. The user can specify how
many matches to be used, and only the top matches (based on
error) will be used. This method works reasonably well for
clean images. The depth was calculated for each feature and
then averaged to calculate the overall depth of the quad. This
was done under the assumption that the pitch and roll angles
experienced by the quad are small, and therefore the camera
depth is roughly equal to the quadcopter depth.

1) Refinements: Although the original sliding window
method worked well, the height measurements were still
inconsistent frame-to-frame. Some of this was due to factors
outside of our control, such as the fact that distance between
the cameras was small, resulting in decreasing performance
above 2m. However, one other problem we noticed was that
the feature in the left camera did not have the exact same y
coordinate in the right image, so moving the window along
the x axis only would never find the exact same feature. This
would lead to lots of noise in the height measurement. To
get around this we had the window move in both the x and y
directions, which allowed us to increase our feature matches
significantly.

Even with this change, there were still instances where we
would not be able to detect the corresponding feature in the
right camera frame. We believe that this is due to the fact that
even at the same feature in both images, the pixel values are
different. We checked this manually and found discrepancies
in the pixel values of up to 15. Although it was thought that
this error should be present in all windows and therefore not

affect the feature matching, we observed otherwise. To get
around this, we decided to change our error equation from
the difference in pixels squared to the difference in pixels
cubed (and then take the absolute value). By changing to the
cube root, we are placing more importance on large pixel
differences and reducing the effect of the offset previously
noted. Using this method also helps us be more sensitive to
gradients, such as edges and corners that will be present in
the window.

After implementing both of these methods, our height
measurements improved for most cases, as seen in Figures 3
and 4. For this example, a small number of intial features and
final matches was specified to make it easier for the reader. In
practice, many more features/matches were used.

Fig. 4. After running the full sliding window, these are the best matches. We
see that they match very well with features from 3.

However, certain image frames with very poor lightening
conditions, such as the one shown in Figure 5, still gave very

poor and inconsistent results.

Fig. 5. Some of the frames in the straight line trajectory had very poor
lighting and the sliding window method would not work well.

For increased robustness, we decided to try to utilize feature
matching algorithms to calculate our disparity instead.

B. Feature Matching for Disparity

We used feature matching to replace the window method for
robustness. Like with the window method, SIFT was used to
detect the features in the left and right window. Then a flann
based feature matcher was used to find the feature matches
between the two windows. Next, RANSAC was used to refine
the matches and remove the outliers. Finally, Eq. 2 was used
to calculate the depth based on the refined matches from
RANSAC.

1) Added Filters: Even after we use RANSAC, there was
still some noise in our depth calculation. Two different meth-
ods were implemented to reject these “bad” measurements.

First, a filter was implemented on the disparity for each
feature match. Because we know the points for the right and
left cameras, we know what sign our disparity should be when
comparing features between the two images. This allows us to
filter out disparities that would result in negative depths. Also,
based on Eq. 2 we know what values of disparity to expect
to give us reasonable heights, so we can filter out very high
disparities (greater than 40) that would lead depths of below
.15m. Implementing both of these helped reduce the noise for
each depth estimate.

To further filter the data, a second filter was implemented on
the calculated depths for each feature. For one time instance,
we had between 10-15 matched features that passed the
previous filters (RANSAC, disparity magntitude/sign), which
meant we had 15 depth measurements. Sometimes, there could
still be one or two outliers that would cause problems when
averaging the depths. The median and standard deviation were
found for the depth measurements, and only the depths within
2 standard deviations of the median were kept. For this, the
median was chosen instead of the mean to help eliminate
the effect of outliers during the filtering process. The depth
measurements that fell within 2 standard deviations of the

median were averaged and that gave the depth estimate for
our quad.

C. Optical Flow

Optical flow is the pattern of apparent motion of image
objects between two consecutive frames caused by the move-
mement of object or camera. The pixel velocities were calcu-
lated using the equations given in the class notes. The pixel
coordinates were normalized using the intrinsic parameters.
The obtained pixel velocities were used to compute the angular
and translational velocities using linear least square solver,
which was used to update the position of the quadrotor using
integration.

D. RANSAC

RANSAC or random sampling and consensus, is an algo-
rithm which is used to fit data and remove outliers. It works
by taking some random set of points, fitting a model to those
points, and then checking how many of the total points fit that
model within some specified error tolerance (these points are
called inliers). Many sets of random points are taken and the
set of points that contains the most inliers is kept, and a new
model is made by taking a least squares fit with all of the
inliers of the best fit model, and the outliers are removed.
In this project, RANSAC was used to remove bad feature
matches from Open CV feature matching algorithm. The sets
of points considered feature matches were input as data, and a
homography transformation was used as the model to evaluate
inliers and outliers. RANSAC provided less noisy data by
removing some of the false feature match detections.

III. INTEGRATION

The components mentioned above were integrated together
as follows.

For each sample, the right and left camera frames were
compared to get the depth. Next, the current left camera image
and the previous left camera image are used to calculated the
optical flow (¢ and y) for each feature. These two values,
plus the coordinates of that point and the depth, are used
to calculate the 6 velocities (linear and angular at that feature).

After the velocity is calculated for each feature, it is filtered
similarly to how the depth as filtered - only measurements
that fall within 2 standard deviations are used. The velocities
for that instance are taken to be the average of the filtered
velocities. Finally, these velocities are integrated to find the
accumulated position of the quad. The At used during the
integration was found from the image messages.

IV. RESULTS

A. Depth Measurements

Compare sliding window and feature matcher if have time.

B. Straight Line

The first trajectory that was used was a straight line that
went from (0,0,0) to (2,2,2). The full 3D trajectory for our
predicted position vs. the bebop autonomy are shown below.

Trajectory Comparison

25
2
15 Bebop
.§, Predicted
N 1

0
Ym 2

X (m)

Fig. 6. Predicted Trajectory vs. Bebop Odometry for the Straight Line
Trajectory.

It is difficult to get a good idea of accuracy from the 3D
plot, as there is no time synchronization. Therefore, we present
the time histories of the position below.

X vs. Time
251

Predicted
Odometry

X Position (m)
~

o
w

0 2 4 6 8 10 12 14
Time (sec)

Fig. 7. Predicted X vs. Bebop Odometry for the Straight Line Trajectory.

. Y vs. Time
Predicted
Odometry
1.5+
E
c
=]
= 1
7]
o
o
>
0.5¢
0 — 1 i L L i
0 2 4 6 8 10 12 14
Time (sec)

Fig. 8. Predicted Y vs. Bebop Odometry for the Straight Line Trajectory.

Z vs. Time
257
Predicted
— Odometry
2t
'§' 1.5
c
=]
=
8
a 1
N
0.5
0 : : ‘ : ‘ ‘ ,
0 2 4 6 8 10 12 14
Time (sec)

Fig. 9. Predicted Z vs. Bebop Odometry for the Straight Line Trajectory.

Looking at these results, we see that we are able to
capture the same general trends as the odometry, however our
prediction struggles when the magnitude of the displacement
becomes very large. From Eq. 1, we can see that if Z is under
predicted, then our linear velocities will be under predicted.
From figure 9, we can see that our predicted Z matches the
odometry very well until the depth gets above 1.5m, at which
our prediction levels off.

We believe that some of this error is due to our camera
specs making it hard to accurately obtain Z. From the depth
equation, we see that a disparity of 4 pixels gives us 1.5.
When obtaining many features, tracking, and trying to filter
them, it is harder to obtain good estimates when the disparity
value is so small (for example 4 vs. 8). Some of the error
could also be due to camera blur. The straight line run was

done very quickly, and therefore there is significant camera
blur at certain frames throughout the run. At the end of the
run especially, when the quad stops, there is some blur and
also some pitch to stop the quad. This might also induce
some error as we assumed that there was minimal pitch and
roll when writing our code.

The second trajectory that was used was a helix. Below are
the time histories of our estimated trajectory vs. the bebop
odometry, followed by the 3D trajectory comparison.

Xvs. Time
2 -
1.5}
E
S 1 L
c
=]
=
o
o 05f
>
0
05)
0 10 20 30 40 50
Time (sec)
Fig. 10. Predicted X vs. Bebop Odometry for the Helix Trajectory.
Y vs. Time
1.5

o
o

Y Position (m)
[=]

0 10 20 30 40 50
Time (sec)

Fig. 11. Predicted Y vs. Bebop Odometry for the Helix Trajectory.

Z vs. Time

Z Position {m)

0 10 20 30
Time (sec)

40 50

Fig. 12. Predicted Z vs. Bebop Odometry for the Helix Trajectory.

Trajectory Comparison

X (m)

Y (m)
Fig. 13. Predicted Trajectory vs. Bebop Odometry for the Helix Trajectory.

From these plots, we see the same trends that we saw in
the straight line run. Again, our Z position is under predicted
as the magnitude increases. However, one interesting thing is
that the X and Y are also under predicted, even when the Z
is pretty accurate (basically the first turn of the helix. This
indicates that the struggles in the previous section might not
have been completely related to the Z, but instead that our
code is not able to predict higher velocities.

V. CONCLUSION AND LESSONS LEARNED

From this project, we learned that depth measurement is
very important when computing optical flow. Having a small
baseline distance between the two stereo cameras (.03m) and
a low resolution means that depth measurements deteriorate
as the Z increases. If a bigger stereo camera can not be used,
a different method, such as sonar, should be used for more

accurate Z measurements.

The second major lesson learned was about computational
time.
REFERENCES

[1] ENAE788 Class 5 Slides
[2] Some Code taken from learnopencv.com/rotation-matrix-to-euler-angles/

