
ENAE788M Assignment 4a - Estimating 3D trajectory of a stereo sensor

Estefany Carrillo, Mohamed Khalid M, and Sharan Nayak

I. INTRODUCTION

This project involves the estimating the 3D camera tra-
jectory of a stereo sensor. The stereo camera data bag files
provided by team BRZ is taken as input for estimating the
3D camera trajectory.

II. FEATURE MATCHING

The first step involves acquiring the left and right images
of the stereo sensor. These are got by subscribing to topics
“/duo3d/left/image rect” and “/duo3d/right/image rect” for
the left and right images respectively. Once the images are
acquired, feature points are extracted from the left and right
images using the Features from Accelerated Segment Test
(FAST) algorithm. The feature points from the left and right
images are brute forced compared using the L2 norm to
find matching features. The matching features are sorted by
closest match and then only the first few (5 to be exact) are
used for depth estimation.

Fig. 1: Features obtained from the FAST algorithm in the
two images obtained from the stereo camera.

III. DEPTH ESTIMATION

For depth estimation, the disparity of each of the first five
matches is calculated. The disparity is calculated using the
equation (1)

d = (XCL −XL) − (XCR −XR) (1)

where XCL is x-pixel coordinate of center of left Image,
XL is x-pixel coordinate of feature point in left image,
XCR is x-pixel coordinate of right image and XR is x-pixel
coordinate of feature point in right image. Once the disparity
d is calculated, the depth is determined using the equation
(2):

Z = fPB/d (2)

where Z is the depth, fP is the focal length in pixel units,
B is the baseline distance and d is the disparity. Using
the Duo3d MLX datasheet, the focal length f=2mm and

the baseline distance d=30 mm. The focal length fP is
calculated as f/w where w is the pixel width (in physical
units) obtained as 6µm from DUO 3D datasheet.

The average of the depth calculated from the best 5
matched points is determined and run through a 3-point
moving average low pass filter to filter out high frequency
noise. It is observed through testing that were a some bias
error of 30 cm associated with the calculated depth. This
bias value is subtracted from the filtered Z value to get final
Z depth estimate.

IV. OPTICAL FLOW

In order to estimate the linear and angular velocities,
the sparse optical flow between two consecutive frames is
computed using the Kanade-Lucas-Tomasi Tracker (KLT).
First, corner points are detected using the function from
OpenCV, goodFeaturesToTrack. This function is an imple-
mentation of the Shi-Tomasi corner detection, in which we
set the maximum number of corners that should be detected
to 100, the quality level of detection to 0.3, the minimum
distance between detected corners to 10, and the block size
to 10. Once we have the corner points, we then pass them
to the OpenCV function calcOpticalFlowPyrLK along with
two consecutive frames to return the positions of the detected
corner in the both images. In Figs. 2-4, we can observe the
tracks generated from the optical flow computed.

Fig. 2: Corner points detected using the KLT algorithm. Gray
and black circles represent these corner points detected in the
first left image of the stereo camera.

Once we have the corresponding positions of corner points
in the consecutive images, we then compute the delta time
∆t by extracting the timestamp from each image. With the



Fig. 3: Tracks obtained from the optical flow using the corner
points detected after 10 frames.

Fig. 4: Tracks obtained from the optical flow using the corner
points detected after 50 frames.

command rostopic hz, we were able to get the publish rate,
which was about 14Hz (or 0.07 secs).

The corner points detected in consecutive frames are
transformed from pixel values to normalized coordinates by
dividing these values by the focal length in pixels. Then, we
compute their displacement and divide it by the delta time
between the consecutive frames.

The next step is to use these normalized coordinates along
with the optical flow equation to solve for the linear and
angular velocities:

[
ẋ
ẏ

]
=

[
− 1

z 0 x
z xy −(1 + x2) y

0 − 1
z

y
z (1 + y2) −xy −x

]

Vx
Vy
Vz
Ωx

Ωy

Ωz


Using the function lstsq from the numpy package, we

compute the linear and angular velocities for each pair of
detected corners between consecutive frames. We integrate
the velocities obtained over the delta time and compute a

pose estimate. In order to improve accuracy in the estimates,
we identify outliers by computing the median value of the
estimates and the absolute difference between the estimates
and their median. We then keep the estimates that are within
a small deviation from the median.

For the final step, we average out the pose estimates after
removing the outliers and this average estimate is added to
the current pose which is assumed to start at 0.

V. RVIZ DISPLAY

We use Rviz application to plot the pose positions of the
quadrotor wrto to the world frame. The pose estimates calcu-
lated using optical flow and depth estimation is broadcasted
from our application to Rviz every 0.1 sec. For recording the
video for rviz and detected features, a time scaling factor of
4 is multiplied to ∆t. This is done for both helix and point
2 point trajectory. This constant can be considered as a gain
that drives us closer to the odometry trajectory. The recorded
videos are speed up 4-5 times its initial speed to limit the
size of the video.

Fig. 5

VI. CONCLUSION

In this project, we did pose estimation using stereo camera.
We used feature detection using FAST algorithm to estimate
depth and optical flow to estimate the rotation and translation.
Our pose estimation produced correct shapes for helix and
point to point trajectory but our estimation of magnitudes of
the pose could have improved. Our future work will primarily
include adding more support to remove outleirs and just
using optical flow to estimate depth (instead of manually
do it through FAST algorithm).


