
Stereo Visual Odometry - USING 1 LATE DAY

Team sudo rm -rf *

Abhishek Shastry
Department of Aerospace Engineering

University of Maryland
College Park 20742

Email: shastry@umd.edu

Animesh Shastry
Department of Aerospace Engineering

University of Maryland
College Park 20742

Email: animeshs@umd.edu

Nicholas Rehm
Department of Aerospace Engineering

University of Maryland
College Park 20742

Email: nrehm@umd.edu

Abstract—In this report, odometry and pose estimation is
achieved through the use of a stereo camera on the PRG Husky
for ENAE788M: Hands on Autonomous Aerial Robotics. Features
are detected and matched at time t and t-dt to calculate the
relative change in x and y. The same features are then matched
between left and right video frames at time t to calculate the
depth of those features using the disparity, focal length, and
baseline of the camera set. The full set of detected features
and their corresponding coordinates are fit to an optical flow
model using RANSAC. Results show that this method is good at
estimating the vehicle pose at low altitude, but suffers at higher
altitude due to the small baseline between the stereo cameras.

I. INTRODUCTION

Downward-facing stereo video feed can be used to obtain
an estimate of relative camera velocity which can be integrated
with time to compute relative camera location in a fixed inertial
frame. This method of odometry can be used to provide feed-
back for outer-loop control schemes on a quadrotor to carry
out a desired flight path. Temporal feature matching allows for
a displacement estimate while spatial feature matching of the
stereo image pair allows for a distance estimate which is why
a stereo image pair is required to obtain a full solution. This
method is prone to outliers which must be rejected in order
to create an accurate model of the depth and pose estimation.
Link to the result videos: Click Here

II. BASIC IMPLEMENTATION METHOD

A. Feature Detection and Matching

Temporal and spatial feature matching is achieved by
generation of ORB features in two images and their
brute-force matching. This implemented in OpenCV
by creating the objects orb = cv2.ORB_create()
and bf = cv2.BFMatcher(cv2.NORM_HAMMING,
crossCheck = True) along with using the functions
orb.detectAndCompute and bf.match. The features
detected in the left stereo camera’s image at time t are
matched with the features from the previous image obtained
from the left stereo camera at time t−dt to get the temporally
matched features. A sample temporal feature matching is
shown in Figure 1. To get the spatially matched features, a
similar feature matching is performed between the left and

Fig. 1. Temporal ORB feature matching between current left frame at time t
(plotted on left) and previous left frame obtained at t− dt (plotted on right)

Fig. 2. Spatial ORB feature matching between left and right stereo image
frames

right images of the stereo camera at time t. A sample spatial
feature matching is shown in Figure 2.

B. Feature Sorting and Trimming

Both the spatially and temporally matched feature set are
sorted according to their matched features’ distances and the
bottom 50% of the matches are trimmed. This results in the
matched feature set being more accurate as we are removing
the “bad” matches.

C. Removing “lonely” matches

The intersection of the Temporal and Spatial matched fea-
ture set gives us the common features that are present in the 3-
image set {Right Image(t), Left Image(t), Left Image(t−1)}.
The Left Image(t) is set as the Query Image for both Temporal
and Spatial match set as it is the common image. Thus, the
Right Image(t) becomes the Train Image for the Spatial match
set and Left Image(t − 1) becomes the Train Image for the

https://www.youtube.com/watch?v=eYa7GON8TfA&feature=youtu.be


Temporal match set. Intersection of the two sets is generated,
by first sorting both the matched sets according to their “Query
Index” and then looking at the Query Indexes of both the
sets and extracting out the matches that have the same Query
Index. Both the depth value and the temporal displacement
value of these common matches/features can now be computed
as described in the following subsections.

D. Depth Estimation

The depth of every ith spatially detected feature relative to
the camera can be calculated as:

Zi =
f ∗B
di

=
f ∗B

(xi)R − (xi)L
(1)

where f is the known normalized focal length (in pixel
units) of the camera, B is the baseline of the stereo cameras,
and di is the disparity of the ith feature in pixel coordinates
between the left and right camera frames. The disparity doesn’t
has the y pixel coordinates as all the epipolar lines are parallel
in both the images, which results from the fact that there is
no relative orientation between the Left and Right camera of
the Duo3D Stereo rig. The individual feature depths must be
calculated separately as we are assuming non-zero pitch and
roll of the quadrotor.

E. Optical Flow

A sparse optical flow is computed for every feature from the
temporal feature matching. The difference in the ith features’
pixel coordinates at times t and t−dt multiplied by the inverse
of dt gives the optical flow in pixel coordinates [u̇i v̇i]

T . Some
outliers in the feature matching lead to incorrect optical flow
estimates, but this is taken care of with RANSAC. The features
in pixel coordinates can be transformed in the normalized
image coordinates by using the following transformation.

xi =
ui − cx

fx
(2)

yi =
vi − cy
fy

(3)

Differentiating the above equation gives the optical flow in the
normalized image coordinates.

ẋi =
u̇i

fx
(4)

ẏi =
v̇i
fy

(5)

Fig. 3. Computed optical flow between current and previous left camera
frames. Typically, there are no mismatched features left after sorting the
matches by distance followed by trimming process.

Fig. 4. A rare case when an outlier due to wrong feature matching is present
in the computed optical flow.

F. Velocity and Pose Estimation with Linear Least-Squares

For every ith feature the equation relating the optical flow
and the camera’s linear and angular velocity is written as
follows.

[
ẋ
ẏ

]
i

=

− 1
Zi

0 xi

Zi
xiyi −1− x2

i yi

0 − 1
Zi

yi

Zi
1 + y2i −xiyi −xi



Vx

Vy

Vz

Ωx

Ωy

Ωz


(6)

The equation is linear in nature and can be molded into the
form y = Ax when all the data for the ith pixel are stacked
on top of each other. A standard linear least-squares algorithm
will then solve for x which is the camera’s linear and angular
velocity. This velocity is in the camera frame and has to be
converted into the body frame. The body frame velocity is



then numerically integrated to get the pose estimate of the
quadrotor.

G. Velocity and Pose Estimation with RANSAC

Feature matchings are never always perfect and therefore
the optical flow dataset will have some outliers as shown in
Figure 4. Hence, to robustly estimate the quadrotor’s velocity
from the optical flow equation (6), a RANSAC algorithm
has been implemented. A general view of the algorithm is
described below.
A set of three matched points are randomly selected and a
model is generated using equation (6). Every other set of
matched points are then compared to this model to compute the
total number of inliers based on a tuned error tolerance. This
is done k times to find the set that includes the most number of
inliers, which are then used to compute the ”best” model. The
number of iterations k is selected using equation (7) which
describes the ratio of log-likelihood of never selecting a full
inlier set in k iterations to selecting a set that has at least
one outlier. The parameter n(=3 for model (6)) represents
the minimum number of points (randomly sampled from y)
required to define the model (x). Parameter w is an estimate of
the number of inliers to total number of points and it represents
the probability of randomly selecting an inlier in y. Parameter
p represents the desired probability of selecting at least one
inlier set in k iterations. For example, assuming that there is
a 75% chance that a randomly sampled point will belong to
an inlier, 5 iterations will guarantee that the probability of
selecting at least one full inlier set and correspondingly the
“best model” is around 93.54%

k =
log(1− p)

log(1− wn)
(7)

III. ADDITIONAL IMPLEMENTATION METHODS

A. Point Cloud Generation and plane fitting

A sparse point cloud is generated by triangulating every
feature from the spatially matched feature set. Assuming that
the quadrotor flies over a level surface, a plane is fitted on the
point cloud using RANSAC and its orientation and distance
from origin gives us the roll, pitch and height information of
the left stereo-camera with respect to the fitted plane, which is
an estimate of the ground plane (can also be considered as the
inertial frame). The roll and pitch angles are then transformed
into the body frame to get the quadrotor’s roll and pitch angles.
Since, the baseline of the stereo-camera setup is low (30mm)
the height estimates of the individual points degrade with
increase in height of the quadrotor. This can be observed in
the Figures 5, 6, 7.

Fig. 5. Point Cloud from triangulation of ORB Stereo features at low height.
There are no outliers and the height estimates are fairly accurate.

Fig. 6. Point Cloud from triangulation of ORB Stereo features at medium
height. There are a few outliers and the height estimates are doable.

Fig. 7. Point Cloud from triangulation of ORB Stereo features at high height.
There are many outliers and the height estimates are not good enough.



B. Orientation from IMU

The orientation obtained by integrating the angular velocity
estimates from Optical Flow will diverge from the ground
truth with time as there is no direct measurement. Hence, in
practice an IMU is used along with the Stereo-camera pair in a
tightly/loosely integrated method to generate better estimates
of pose. Since, the dataset didn’t have IMU measurements
from the Duo3D, we used the Bebop’s Odometry coming at
5Hz to get the orientation. As the frequency was low, an
increasing integration error was still observed in the pose
estimates. Hence, we used the angular velocity estimates from
the optical flow, integrated over time, to “fill” in the gaps
between two measurements.

IV. RESULTS FOR POINT TO POINT DATASET

Point to point dataset had a large jerks in the orientation and
hence a lot of the images were blurry which resulted in bad
feature detection and matching. Hence, in this case RANSAC
method slightly performs better than Linear least-squares. The
pose estimates coming from Bebop is plotted in blue, from
Linear least-squares method given in Section II-F is plotted
in red, from RANSAC method in Section II-G is plotted in
yellow, from plane fitting method in Section III-A is plotted
in green and from IMU method in Section III-B is plotted in
purple.

A. Position Estimates

Fig. 8. Quadrotor’s X-position computed from various methods.

Fig. 9. Quadrotor’s Y-position computed from various methods

Fig. 10. Quadrotor’s Z-position computed from various methods

B. Velocity Estimates

Fig. 11. Quadrotor’s X velocity computed from various methods

Fig. 12. Quadrotor’s Y velocity computed from various methods

Fig. 13. Quadrotor’s Z velocity computed from various methods



C. Orientation Estimates

Fig. 14. Quadrotor’s roll angle (φ) computed from various methods

Fig. 15. Quadrotor’s pitch angle (θ) computed from various methods

Fig. 16. Quadrotor’s yaw angle (ψ) computed from various methods

V. RESULTS FOR HELIX DATASET

Helix dataset had the quadrotor flying at higher altitudes and
therefore, the position estimates worsened at increasing rates
as height increased. However, the number of false matches
were low, and hence, in this case Linear least-squares method
slightly performs better than RANSAC which takes more
computation time and runs slower which leads to higher accu-
mulation of numerical integration errors. The pose estimates
coming from Bebop is plotted in blue, from Linear least-
squares method given in Section II-F is plotted in red, from
RANSAC method in Section II-G is plotted in yellow, from
plane fitting method in Section III-A is plotted in green and
from IMU method in Section III-B is plotted in purple.

A. Position Estimates

Fig. 17. Quadrotor’s X-position computed from various methods.

Fig. 18. Quadrotor’s Y-position computed from various methods

Fig. 19. Quadrotor’s Z-position computed from various methods

B. Velocity Estimates

Fig. 20. Quadrotor’s X velocity computed from various methods



Fig. 21. Quadrotor’s Y velocity computed from various methods

Fig. 22. Quadrotor’s Z velocity computed from various methods

C. Orientation Estimates

Fig. 23. Quadrotor’s roll angle (φ) computed from various methods

Fig. 24. Quadrotor’s pitch angle (θ) computed from various methods

Fig. 25. Quadrotor’s yaw angle (ψ) computed from various methods

VI. CONCLUSION

Accuracy of stereo visual odometry was found to be heavily
dependent on altitude due to the fixed and small baseline of
the stereo camera set. Depth computations are only accurate
for a small range of altitudes, in our case a maximum of about
1.5 meters. The use of alternative depth estimates such as an
ultrasonic distance sensor to estimate vehicle altitude would
significantly improve the optical flow estimates. Additionally,
IMU data could be used in place of the odometry orientation
estimate to improve performance because a ground plane can
easily be extracted when combined with a known camera
depth. In this case, only a monocular downward facing camera
would be required to temporally match the scene features to
compute velocity. This scheme is probably what is already
implemented on the bebop which is why our performance
across all altitudes is inconsistent and worse than the bebop’s.


	Introduction
	Basic Implementation method
	Feature Detection and Matching
	Feature Sorting and Trimming
	Removing ``lonely'' matches
	Depth Estimation
	Optical Flow
	Velocity and Pose Estimation with Linear Least-Squares
	Velocity and Pose Estimation with RANSAC

	Additional Implementation methods
	Point Cloud Generation and plane fitting
	Orientation from IMU

	Results for Point to Point Dataset
	Position Estimates
	Velocity Estimates
	Orientation Estimates

	Results for Helix Dataset
	Position Estimates
	Velocity Estimates
	Orientation Estimates

	Conclusion

