
Project 4b: Avoid the wall and find the bridge
Team 6: Noob Quaternions

using 2 late days

Prateek Arora
Masters of Engineering in Robotics

University of Maryland, College Park
Email: pratique@terpmail.umd.edu

Abhinav Modi
Masters of Engineering in Robotics

University of Maryland, College Park
Email: abhi1625@umd.edu

I. INTRODUCTION

In this project, we have two tasks:

1) Find the bridge placed on the river and cross the bridge
while avoiding the river

2) Detect the wall in front of your quadrotor and go through
above or below the wall, depending on the height of the
wall

II. DATA COLLECTION

1) Find the bridge: Since we used front camera for this task,
the images from front camera were collected by hovering
the quadrotor near one end of the river, at the height of
0.8 meters from the ground and 1.5 meters away from
the river and then moving the quadrotor manually all the
way towards the other end of the river.

2) Wall detection: For this task, the images from the front
camera were recorded by moving the quadrotor in the
plane parallel to the wall. The quadrotor was moved
manually in a rectangular trajectory (in the plane parallel
to the wall) starting at height of 1.0 meter from ground.
The data was collected for different height of the wall.

III. IMPLEMENTATION

A. Avoiding the wall

The most important aspect in this part was to detect the
wall and find the height at which it was placed. A simple
answer to this problem is feature based segmentation but it
was not so simple in this case. The features detected on the
wall were so similar to the features in the background that
no feature algorithm proved good enough to help detect the
wall with the required degree of robustness. This led us to try
the following different techniques which take into account the
3-dimensional nature of the scene to aid in the segmentation
process.

1) Monocular Structure from Motion: The first thing we
tried was using sequence of images to estimate the relative
depth in the scene and generate a sparse depth map. The
problem with this algorithm was its high dependence on
feature matching in the two frames.

2) FastDepth: Monocular Depth Estimation using CNNs:
Then we tried a deep learning approach to estimate depth of
the scene for a monocular system. Most of the deep learning
methods for complex tasks like depth estimation from image
data are computationally very expensive to be run on an
embedded system like the Intel Upboard. But recently MIT
came up with a method called FastDepth[1] where they
came up with a novel network architecture using depth-wise
convolutions and hardware specific compilation of the code to
reduce the latency in both the encoder and decoder segments
of the network.
We deployed one of their pretrained model(on NYU Depth v2
dataset) but the scene at hand was geometrically very different
from the ones in the dataset that was used for training. The
output of the network for one test image is shown in fig(1)

Figure 1: Depth map generated using fast-depth approach
using a pretrained network for the image taken from the
monocular camera



Due to lack of time we could not generate enough data so
as to train this network for our purpose. But this was a good
exercise to help us learn about such approaches and maybe if
we can generate enough data, such an approach can be used for
future projects requiring such complex on-board computations.

3) Optical Flow Estimation using a Spatial Pyramid
Network: Then we tried a data agnostic deep learning
based approach. Estimating depth from optical flow using
consecutive image frames. The only assumption was that
rotational motion is absent and the drone moves only
translation directions X,Y and Z which is quite reasonable
for small angle approximations at low speeds.

The following dense optical flow image (fig(2)) was gener-
ated by the network given two consecutive frames taken from
the onboard monocular camera as input.

Figure 2: Flow estimation using SPN using the top two images
as input

The flow estimation was very accurate and sharp giving
perfect segmentation of the wall. But high accuracy comes
with a high computation cost. As the project requires on-
board communication of bebop and the micro-processor for
autonomous flight, there was only so much processing power
available for the neural net to run onboard. The inference time
achieved for the network while running all the other required
processes in parallel was approximately 43s per frame. Pruning
and other network compression techniques could not be tried
but due to lack of time.

4) Dense optical flow - Farneback: Finally, we ended up
using the traditional dense flow estimation technique “Gunnar
Farnebäck” approach of Two-Frame Motion Estimation Based
on Polynomial Expansion. The flow estimation was not as
accurate as compared to SPY-Net but it makes up for the loss
in accuracy by its low latency and real-time execution. This
was a major point for consideration. The dense flow estimated
by the algorithm is shown in figure 3:

Using the Farnebäck approach we estimate flow and then
segment the wall using simple k-means clustering where k=4

Figure 3: Flow estimation using Gunnar Farnebäck method

bins. To remove random clusters in the background a simple
thresholding on median flow values was also performed.
Once the segmentation is complete the following pipeline is
followed for determining the location of the wall in 3D and
then navigating across it:

1) The segmentation gives a binary mask of the wall in the
image.

2) Simple Blob detection from OpenCV is used to find the
center of this blob.

3) Once in hover after takeoff, the altitude is increased
from 1 to 1.5m in intervals of 0.05m allowing motion
in vertical direction to provide multiple views for flow
calculation. Meanwhile, the drone aligns the center of
the detected blob with the center-line of the image.

4) As the center of the detected blob aligns with the image
center, the vertical error is calculated using

verror =
himage

2
− y(blob center) (1)

5) If the verror is negative it means blob center lies in the
lower half of the image indicating that the wall center
is present below the horizon of the camera i.e., below
the drone. Thus, it is safe to fly forward at a height of
2-2.25m, i.e., above the wall.

6) Vice-versa, verror is positive it means it is safe to fly at
a height of 0.8-1m i.e., below the wall.

Note: A threshold was empirically determined to handle cases
where the wall center is just below or just above the image
center-line. The threshold was chosen to be around 20 pixels
to assure save passage avoiding near-miss scenarios. Links to
recordings of the demo run and trajectory followed by the
drone are present in the section V.

B. Find the bridge

Finding the bridge was a relatively easier task. For this
task, we assume the the quadrotor takes off at the left end
of the river and searches for the bridge by moving along
the river until the other end of river. The process to bridge
detection is elaborated in further sections:



1) Color thresholding:: For the current setup and environ-
ment the river was easily segmented using color thresholding
because of the contrast blue color offered from the rest of
the scene (as seen in figure 4). Owing to the fact that we
could choose lighting of the scene, color thresholding was
an apt choice as it is faster than Single Gaussian Model and
Gaussian Mixture Model. After thresholding the image, the
ROI was extracted and resized to the actual dimension of the
image for further processing (as seen in figure 5).

Figure 4: From left to right (a) Input image (b) Result of color
thresholding

Figure 5: Output of ROI extraction and resizing

2) Image Processing and filtering:: The resulting image
was converted to binary mask. The resultant mask contained
a big blob corresponding to the river and noise corresponding
to the small patches of blue color because of imperfect
segmentation. A median filter with a kernel of 7x7 was used to
remove the noise followed by a closing morphology operation.
This gave a decent, noise-free segmentation of river as seen
in figure 6(b).

3) Blob detection:: In order to detect the bridge, a simple
approach of detecting discontinuity in the river mask was
followed. To do so we detect blobs in the image with a
constraints on size and inertia of the blob. The aim was to
detect mainly two categories of blob i.e (1) the part of river
(blue) visible in between the bridge (referred to as bridge-blob)
and (2) the part of river on either side of the bridge (referred
to as river-blob). These constraints were set to differentiate
between the two categories of blob. The algorithm is designed
to find the bridge-blob in the the first frame (figure 7(a))
and the align the image center to the bridge-blob center.
In case multiple bridge-blobs are detected the quadrotor is
commanded to move right. However, if the bridge-blob is not
detected in the first frame, river-blob was detected. Owing
to the constraints the we have chosen there can either be a
single river-blob or two river-blobs in the image. If a single
blob was detected (as seen in figure 7(b)) the quadrotor moves
to the right along the river. However, if two river-blobs are
detected we remove the two river-blobs in the image followed

by detection of bridge-blob (as seen in figure 8). After the
detection of river-blob, we again try to align the image center
to river center.
Once the image center is aligned to the bridge-blob center we
go forward until the blob is out of image frame.

Figure 6: From left to right (a) Mask after thresholding (b)
Noise reduction after applying median blur

Figure 7: From left to right (a) Detection of Bridge-blob in
the first frame (b) Detection of river-blob when bridge-blob is
not detected in the first frame

Figure 8: From left to right (a) Image with filtered mask (b)
River-blobs on either sides of bride detected and removed (c)
Bridge-blob detection after removing river blobs

IV. DISCUSSION AND CONCLUSION

A. Optical Flow Estimation: wall Detection

As explained in section III, multiple methods were tested
for segmenting the wall from the background. The tradi-
tional methods provide reasonable results but deep learning
approaches give far more accurate results. There is still a long
way to go before deep learning approaches can be used on
embedded systems but the future looks bright with the advent



of approaches like fast-depth showing promise in the field of
neural net inference on computationally constrained systems.
Flow based methods to estimate static scene geometry require
the camera to atleast move from its initial position to another
location to get an estimate of the flow, which was solved by
initially increasing altitude from 1 to 1.5m.

B. River Detection

For our test case we have used color thresholding to separate
river. Simple color thresholding in the river detection can
be replaced by Gaussian Mixture Models for robust color
segmentation of river.

V. OUTPUTS AND RESULTS

Cross the bridge: The odometry plot begin with quadrotor
mid air with the red axis pointing towards the river. The river
is parallel to the plane formed with red and green axis.
Here are the links:

• Rviz plot task1.mp4
• Link to live demo

Avoid the wall: The odometry plot begin with quadrotor taking
off from the origin and the window is placed to the left of
the quadrotor (in front of green axis as seen from the first 2
seconds of the video )
Here are the links:

• Rviz plot task2.mp4
• Link to live demo

VI. REFERENCES

1) FastDepth: Fast Monocular Depth Estimation on Em-
bedded Systems(link)

2) Optical Flow Estimation using a Spatial Pyramid Net-
work(link)

3) Two-Frame Motion Estimation Based on Polynomial
Expansion(link)

https://drive.google.com/file/d/1caR6rU7fS44XJDw4XCPgVNsY5S6rdriZ/view?usp=sharing
https://photos.app.goo.gl/PxQpDN62M6z5fKZY9
https://drive.google.com/file/d/1QxVtvMS8tXGhuCNO4f5qZsfVgTZiFABw/view?usp=sharing
https://photos.app.goo.gl/pSGnvLrshGXYipvD7
https://arxiv.org/pdf/1903.03273.pdf
http://spynet.is.tue.mpg.de/paper/MainPaper.pdf
http://www.diva-portal.org/smash/get/diva2:273847/FULLTEXT01.pdf

	Introduction
	Data Collection
	Implementation
	Avoiding the wall
	Monocular Structure from Motion
	FastDepth: Monocular Depth Estimation using CNNs
	Optical Flow Estimation using a Spatial Pyramid Network
	Dense optical flow - Farneback

	Find the bridge
	Color thresholding:
	Image Processing and filtering:
	Blob detection:


	Discussion and Conclusion
	Optical Flow Estimation: wall Detection
	River Detection

	Outputs and Results
	References

