
ENAE788M Project 4b
Team Bouncing Rainbow Zebras

Erik Holum
Graduate Student

University of Maryland
Email: eholum@gmail.com

Edward Carney
Graduate Student

University of Maryland
Email: carneyedwardj@gmail.com

Derek Thompson
Graduate Student

University of Maryland
Email: derekbt@yahoo.com

Abstract—This project has two parts. The first to fly over
or under a wall of unknown vertical position. The second to
recognize a ‘bridge’ and fly the Bebop directly over the center.

I. WALL DETECTION AND AVOIDANCE

A. Detection

We initially tried using the optical flow equations with the
Bebop Odometry’s linear velocity measurement to compute
the depth to each detected pixel using,[

ẋ
ẏ

]
=

1

Z

[
−f 0 x
0 −f y

]VxVy
Vz

 . (1)

Where Vx, Vy , and Vz are the velocity’s in the Camera
frame, f is the focal length, and ẋ, ẏ are the pixel velocities.
Given the velocities, we can simply solve for the depth, Z.
Note that we assume Ω to be 0. Unfortunately, the conversion
from the Bebop’s odometry frame to the camera frame was
too difficult to work out, and we got reliable measurements
very infrequently (maybe 1 in 10 Odometry updates).

We ended up going with a simpler method of simply using
pixel velocities to determine which features were ‘close’ and
which were ‘far’. In the simplest description, the algorithm for
wall detection is,

1) Detect features in an initial image.
2) Track the optical flow of the features for a set amount

of time.
3) Compute the raw pixel deltas in the optical flow.
4) Cluster into two groups with K-means to determine

which pixels moved a lot and which did not. The pixels
that moved more are the nearer features, and most likely
the wall.

5) The top most pixel (based on Y position) is the bottom
of the wall, the bottom most is the top of wall.

This was the basic starting point for us, everything else we
did was simply add-ons to try to improve the performance of
this basic algorithm.

The first step was to reduce the number of extraneous
features detected by OpenCV’s [1] goodFeaturesToTrack
function. The first portion of this was restricting the field of
view to a narrower image, which we do using the fact that
we are starting with the wall directly in front of us, as well
as the Bebop’s altitude estimate, ZB . We start by defining a

rectangle of interest in front of the camera frame. Say we want
to focus on a region that is a meters in width, at a distance
dx, in front of the Bebop. Then we can simply eliminate all
pixels greater than a distance xpixel = (af)/(2dx) from the
center Cx.

Because of the carpet, the ground is also a big problem.
Hence we set a distance, dz , in front of the camera frame that
we also want to ignore. The logic being that if we only care
about the ground if we can see it behind the wall. If we are at
altitude, ZB , and we only care about ground data at a distance,
dz , directly in front of the drone, then from similar triangles
we can mask and pixel with y value greater than,

yp = Cy +
ZB

dz
f.

Given the mask, we are able to only consider features within
a certain area of the image. An example masked image is given
in figure 1. Sample feature detection is provided in figure 1.

Fig. 1. Example of a simple rectangular mask we apply for feature recog-
nition. The lower limit is dependent on the altitude of the Bebop. Note the
mask is applied, and then the image is undistorted.

Next, we use Lucas-Kanade optical flow in OpenCV’s
calcOpticalF lowPyrLK to compute [∆xi,∆yi] for each
feature. We run the image capture and flow at 20 Hz, and
update the features to track every 4 images, in other words,
we track flow for 4 images and reset the features to track every
Bebop odometry reading. Figure 3 has a sample of the optical
flow for the features given in figure 2.

Finally, we come to the problem of determining which
pixels are close and which are far. First off, when searching



Fig. 2. Feature detection on masked image using the Shi-Tomasi Corner
Detector in OpenCVs goodFeaturesToTrack.

Fig. 3. Feature flow tracked over 4 images, at a rate of 20 Hz.

for the map, we commanded the Bebop to simply move up
and down in the Z direction, allowing us to immediately
ignore pixels with large ∆x greater than some threshold. Next,
we used K-means to cluster the flow coordinates by ∆y into
two groups, Fnear and Ffar, under the presumption that the
features with large ∆y are closer, and small ∆y are more
distant.

We noticed in testing that the clustering was prone to the
occasional large of outlier getting into Fnear, but for the most
part, the clustering was successful when the optical flow was
accurate. However, since we used the topmost and bottom most
pixels in Fnear to estimate the location of the top and bottom
of the wall, these outliers could be fatal. To remove them,
we simply used a threshold based on standard deviations from
the mean coordinate of Fnear. An image demonstrating the
clustering, distance filtering, then computing the upper, lower,
and center of wall is provided in figure 4.

Given the focal length of the camera, f , and the location of
the center, top, and bottom of the wall in pixel coordinates,
it was trivial to compute the estimated angle from the camera
frame to these relative poses. E.g., to compute the angle
between the camera and the top of the wall,

θ = arctan
ymax − Cy

f
.

Fig. 4. Pixel depth map from K-means clustering on y-deltas. Blue dots
are near, green are far, red are rejected by the standard deviation from the
mean near point (pink). The topmost and bottom most pixels are marked with
horizontal lines.

The controller leveraged a variety of these angles in its
strategy, as discussed in the following section.

B. Controls

The implementation for the wall avoidance and traversal
was very rudimentary due to the difficulty detecting the center
of the wall. The algorithm started with the assumption that
the wall was relatively centered in the drone field of view.
Assuming it would be able to see the wall the drone would
move between 0.5 and 2.5 meters until it determined that it
was safe to move forward through the gate. This required a
change to the overall state machine allowing for multiple state
exit conditions and subsequent state options.

To aid wall detection from optical flow the drone was set to
climb at a relatively slow constant rate between the maximum
allowed altitude (2.5m), and the minimum flyable altitude (0.5)
meters. While the drone was moving between the altitudes,
the controller was receiving measurement data from the wall
detection script. From this data the controller was able to yaw
to the center of the estimated wall position and estimate the
top and bottom of the wall from a prior estimated distance to
wall. The altitude of the wall center was calculated with the
following equation, where θmin is the smaller absolute value
between the angle to the top and to the bottom of the wall
cluster.

Zwall = Zbebop +Xwall ∗ sin(θmin) + sign(θmin) ∗ 0.5 (2)

This method gave us a more reliable way to predict the true
height of the wall based in scenarios where the wall was only
partially seen. In cases where the entire wall was not seen,
taking the average of the computed cluster would return a
height closer to the drone, not giving the drone enough altitude
clearance to fly through the gate.

With the measurements, the altitude of the gate was com-
puted from a moving average. When the standard deviation of
the measurements went below a threshold and the estimated
height was calculated above a clearance distance, the state was
progressed and the drone was instructed to move forward a set
distance through the gate.



II. BRIDGE DETECTION

A. Detection

Bridge detection utilized similar functionality as the bulls-
eye detection performed for Project 3b. Specifically, this was
done by using the down-facing Duo camera used to capture
raw grayscale imagery, creating a masked image from these
raw images by applying an adaptive thresholding algorithm,
detecting contours within the masked image, applying bound-
ing rectangles to each of the contours, then extracting the
center of the bounding rectangle that best fit the expected
bridge shape.

To accomplish the above process, several built-in func-
tions from the OpenCV Python library were used. Namely,
the adaptiveThreshold was used with a specified Gaussian
threshold model to apply an adaptive Gaussian threshold
to the raw grayscale image produced by the Duo camera,
the findContours function was used to detect and extract
all contours in an image, and boundingRect function was
used to find the bounding rectangle around a given contour.
We experimented with multiple methods to pre-process the
masked image prior to detecting contours (including erosion,
dilation, and multiple types of blur), however, experimenting
in different lighting conditions revealed that the most effective
and reliable bridge detection occurred with no pre-processing.
Instead, the application of constraints to determine the bridge
location was done on the detected contours and the bounding
rectangles. In detecting the bridge, we aimed to detect the
smaller rectangles that comprised the bridge and use those to
align the drone laterally with the bridge and move forward
until we were over it, then we could do a brief period of
open-loop control continuing in that direction until we were
across the bridge.

We were allowed to orient the drone directly for this
challenge, and therefore we could assume that we would
always be perpendicular to the bridge. As such, we could
apply rather stringent constraints on the size of the detected
contours and the size and aspect ratio of the bounding rectan-
gles. Specifically, we could ignore very small and very large
contours and bounding rectangles; indeed, for the bounding
rectangles, we knew the height we would be flying at for this
challenge, and as such we could be very specific in the size
of the bounding rectangles sch that they would align with
the smaller rectangles composing the bridge. Additionally,
the aspect ratio for the bounding rectangles (defined as the
length of the rectangle divided by the width) could also be
constrained to limit the results. This generally resulted in a
single rectangle corresponding to the center of the bridge.
The pixel location of the center of the rectangle was used to
compute the roll and pitch angle of the bridge center relative to
the drone, which was published as a ROS topic and subscribed
to by the controller. In the event that there were multiple
detected rectangles, the average of the rectangle centers was
used.

Figures 5 - 9 show the iterative application of these con-
straints on a sample set of data.

Fig. 5. Sample image taken from Duo camera. Note IR LED value is set ot
zero here.

Fig. 6. Sample image from Duo camera with OpenCV’s adaptive Gaussian
thresholding applied.

B. Controls

The controller for the bridge traversal was derived from
the bullseye target control strategy from project 3b. Using
the same nonlinear controller described in previous projects
the drone was initially taken up to a preset altitude where it
could search for the bridge. The drone was commanded to
wait here until it had a confirmed position of the bridge. In
the same method as with the bullseye controller in project 3b
the camera measurement rotations θx, and θy were added to
the drones attitude rotation to get a vector towards the target
from the drones position. The position of the bridge was solved
through intersecting this vector with the ground plane. Once
again these measurements were input into a moving average
filter until the standard deviation reached below a threshold.

With the position of the bridge the algorithm used our
nonlinear controller to position the drone 1 meter behind the
bridge. When the position error dropped below a threshold and
the drone’s velocity was low enough the drone was instructed



Fig. 7. Sample masked image from Duo camera with bounding rectangles
applied to every detected contour.

Fig. 8. Sample masked image from Duo camera with bounding rectangles
applied but with minimum and maximum size limitations.

to move forward a set distance.

III. VIDEOS

Wall Flight:
1) Rviz Positioning: https://youtu.be/E9io6ojWuag
Bridge Flight:
1) Rviz Positioning: https://youtu.be/Fm8jLlAzX0Q

IV. IMPORTANT LESSONS LEARNED

A. Keep it Simple

We wasted a lot of time trying to get the optical flow
equations working to reliable give pixel depth in the physical
world. However, once we gave up on that and went with the
simple clustering method, we found something that worked
even more robustly, with much less complexity. In the future
we should always test the simpler idea to see if it works, then
add complexity only if we need it. As an additional application

Fig. 9. Sample masked image from Duo camera with bounding rectangles
applied but with minimum and maximum size and aspect ratio limitations.

to the keep it simple rule, we reused a significant portion of
our code from the bullseye landing functionality for the bridge
detection. Although the less reflective color of the bridge made
it much more difficult to detect, once detected, the logic to
travel to the bridge was very similar to that used to travel to
the bullseye (minus the landing part).

B. Camera Calibrations are Tough
Making the Bebop Odometry or the Duo Stereo camera

velocities line up enough with the pixel velocities from the
forward facing camera proved to be more difficult than we
though. We wasted a good deal of time tweaking parameters
and trying to understand why our data was so poor, and really
should have just gone with the simple option to begin with.
That being said, in the real world if we absolutely needed
depth from the forward facing camera, we would simple put
the stereo camera/imu on the front, which would be much,
much simpler.

C. Understand Parameters
Using built in methods from cv2 is great for feature detec-

tion and optical flow, but we discovered that we really have to
play with the parameters for each to get them working reliably.
The default values for most of these things are unreasonable.
Hence, once we found reasonable lighting conditions, we
manually tuned thresholds, window sizes, etc for feature
detection and flow that worked ONLY in those conditions.
If the lighting or camera image size change, we should not
expect those parameters to continue working!

ACKNOWLEDGMENT

The authors would like to thank the professors for this
course, Nitin J. Sanket and Chahat Deep Singh, as well as
Dr. Inderjit Chopra.

REFERENCES

[1] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000.

https://youtu.be/E9io6ojWuag
https://youtu.be/Fm8jLlAzX0Q

	Wall Detection and Avoidance
	Detection
	Controls

	Bridge Detection
	Detection
	Controls

	Videos
	Important Lessons Learned
	Keep it Simple
	Camera Calibrations are Tough
	Understand Parameters

	References

