
Team 5 - QDMC - Avoid the Wall and Cross the
Bridge

Vishnu Sashank Dorbala
University of Maryland

vdorbala@umd.edu

Tim Kurtiak
University of Maryland

tkurtiak@umd.edu

Ilya Semenov
University of Maryland

isemenov@umd.edu

Surabhi Verma
University of Maryland

sverma96@umd.edu

Abstract—This report presents the implementation of com-
puter vision algorithms for detecting and estimating depth of
a wall, detecting a river and bridge based on textures, and their
corresponding controls to cross the bridge and avoid the wall.

I. PROBLEM STATEMENT

The aim of this project is to detect and avoid two different
obstacles using computer vision. The first obstacle is a wall
with unknown dimensions and unknown height. The wall
must be identified using the front facing monocular camera
of the ENAE788M Bebop drone and the drone must fly
above or below the wall while staying between it’s posts. See
Figure 1 below for a diagram of the wall and possible height
configurations. The second obstacle is a river, which may not

Figure 1: Diagram of Wall

be flown over. The river can only be crossed by navigating over
a bridge, shown in Figure 2. The river must be detected using
the down facing camera, which is a stereo greyscale camera.
As such, the blue and brown colors can not be effectively
used to distinguish the river and bridge from the background.
Instead, a texture based recognition algorithm is implemented
to identify and overcome this obstacle.

Figure 2: River Obstacle

II. BRIDGE PROBLEM

The river and bridge must be flown over, prompting the use
of the down facing Duo camera. Since this camera is gray-

scale the identification of the river and bridge cannot take
advantage of color. Additionally, this is a flat feature so stereo
identification is also not helpful. Alas, we turn to texture based
methods.

A. Law’s Texture Energy Masks

The first attempted implementation made use of Law’s
texture energy masks. These masks are a a series of 2D convo-
lutions that create, after some filtering, 9 variables describing
a texture aspect for each pixel in the image.

Shown in figure 3 are the fundamental vectors that can
create 16 possible combinations of matricies. These matricies
are convolved with the image to create a 16 element vector at
each pixel. The vectors corresponding to inverted convolutions
are averaged together for rotation invariance (i.e. L5R5 and
R5L5).

Figure 3: Law’s fundamental vectors

These remaining 9-d vectors can be clustered with the k-
means method. For robustness, the number of clusters is found
by using the elbow method with a random subsample of the
entire image for speed.

Looking at figure 4, we can see a grayscale image with
various pbjects that would be difficult to discern with thresh-
olding alone. However, after applying Law’s energy masks we
can see the image has neatly broken down into 4 base textures,
shown in figure 5.

This method was discarded eventually due to the large
computation time involved in taking 33 convolutions of the
entire image.

B. Min-Max Differential Filter

This idea was inspired by Animesh from team sudo. A
custom 2D convolution takes the difference between the max-
imum and minimum values of a window, and uses that as the
value of the pixel at the center of the window. This creates a
map of featured areas. Due to the intensely varying carpeting,
and relatively uniform surface of the bridge and river a mask



Figure 4: Original image pre-textures

Figure 5: Laws textures result

of only the minimum values from this differential filter returns
regions of interest as apparent in figure 6. Unfortunately there
are other areas with few features in the netted area that are
included in the mask, however, they tend to be darker areas
as well. Because the bridge has a light color in the grayscale
image, a bitwise AND operation of a simple threshold for
higher values along with this differential filter low value mask
returns the bridge and river reliably. This AND operation is
shown in figure 7

Figure 6: Differential filter of the image on the left is on the
right

Figure 7: Regular thresholding on the left, Differential thresh-
old in the middle, and resulting mask on the right

C. Poor Man’s Differential Filter

This idea was inspired by Nick from team sudo. Due to the
long processing time of a true differential filter, a similar result
is obtained by using a liberal Canny filter, and utilizing only
the areas with few edges. The resulting mask is noticeably
worse but, much faster as you can imagine from the base
output shown in figure 8.

Figure 8: Example of a liberal canny result, morphological
operations here can approximate the differential filter mask

This approach is combined with a custom double-threshold
filter to produce an adequate mask. One issue is that even
with the IR LED that the duo3d camera uses off, there is still
a noticeable bright spot in the center of it’s vision. The double
mask uses two sets of thresholds for the inner and outer areas
of the image to account for a drop in bridge brightness out of
frame, without creating masks that are too inclusive.

The AND operation as before is used here as well.
This mask can be used with morphological operations to

obtain the largest contour. The largest contour, assumed to
be the outer perimeter of the bridge, is used to additionally
find the holes in the bridge by filtering on: relative perime-
ter, distance to maximum contour, solidity, aspect ratio, and
parallelism. These inner holes tend to lend well to accurate
rotated rectangle fits, which allows the calculation of the line
that crosses the bridge in the correct direction. The center of
the bridge is assumed to be the center of the largest contour,
A.

D. Bridge Controller

With the line and a point found, one can assume that the
vehicle lies at the center of it’s own image C. Therefore
the line segment representing the minimum distance to the
vehicle from the line AD can be found and used to inform
the controller.

If this line segment distance is long, then the vehicle is
at a skew to the bridge and should navigate to this line by
attempting to find point D. If this distance is short, then the
vehicle is lined up to cross the bridge and can proceed to



attempt to cross it. An example of how this is working is
shown in figure 9, not that C is in a dummy location here for
illustration.

Figure 9: Example of calculations to approach bridge

III. WALL PROBLEM

Our approach basically involves extracting the wall from the
image. For this, we find SURF features located only on the
wall and use a FLANN matcher to find correspondences in the
incoming image stream from front facing camera. However,
this led to a lot of incorrect data matching or outliers as seen
in Fig. 10. This could be do to a lot of feature points in the
environment, especially from the textured carpet. We therefore
sought to reduce the search space of the matcher by obtaining
a mask as described below. Fig 11 illustrates the process.

Figure 10: Several Outliers due to Feature Matching Errors

• Adaptive Thresholding on a grayscale median filtered
image.

• Erosion for noise removal.
• Finding external contours on the resultant image.

• Applying a series of dilations to fill in the gaps in the
contoured image.

• Inverting the image to find intermediate masks.
• Choosing the largest masks by area.

Figure 11: Obtaining a mask for feature matching

The mask eliminates the textured carpet in the image and
allows only the wall and some background regions. Applying
feature detection on the resultant image results in maximum
points on the wall region. The matching is more robust with
very few outliers as can be seen in Fig. 12.

Figure 12: Feature matching in masked regions

Next, we apply K-means to cluster the matched points. The
cluster with highest number of points would correspond to the
wall. The mean of these points is the approximate center of
the board. Fig. 13 shows the cluster points in red and blue and
the green dot represents the centroid of the blue cluster. After
post processing, the average centroid of a sample image looks
like Figure 14.

It can be noted that the feature centroid is not always at the
center of the wall. However, it is always on the wall. To aid
in the robustness of this method, the matches are grouped by
clusters and only the strongest cluster is kept. Additionally,
the remaining points are passed through a RANSAC function
and finally a moving average (low pass filter) of the previous
5 results was taken.

IV. WALL CONTROL STRATEGY

The wall control strategy is simply to track towards the
centroid of the wall features. A simple control strategy was



Figure 13: Wall Feature Detection

Figure 14: Average Feature Detection Centroid

implemented to track the centroid of the wall to the center of
the camera in order to line up cross track. Once centered, the
aircraft is instructed to slowly move forward toward the wall
while maintaining a centered cross track.

We use the centroid found to determine if the wall is
set up in a short or tall configuration, and whether to set
vehicle altitude above or below the obstacle. The vehicle is
then trained to maintain a heading towards the wall and pass
through the plane before landing.

V. RESULTS

The detection methods and control strategies worked very
well in practice. The methods are sensitive to different levels of
illumination, but overall work well without any major issues.

VI. LESSONS LEARNED

• Detection algorithms must work quickly in order to base
feedback control off of them. Slow detection causes sloppy
and laggy control.

• Robust detection is the cornerstone to good control. Errant
detection causes bad controller responses which can lead to
a crash.

• The drone is pretty fragile, and can get damaged even during
minor crashes. As these crashes can take up a lot of time
to repair, we should tape the fuselage well to speed up our
efficiency during demos.

• Another important test time trick we learnt was to make
efficient use of roslaunch files along with bash scripts to
execute routine tasks faster.

• The “most important” run-time lesson learnt perhaps was
to land the drone if it looks like it’s about to crash. Drone
crashes take time to repair, and in our case, prevented us
from successfully completing one of the tasks.

VII. CONCLUSION

• The bridge crossing worked well, and and used only the
down facing camera output to find and go across the bridge.

• Although the wall avoidance task worked several times
during our trials, it failed to successfully avoid the wall
during the demo. This can be attributed mainly to the time
loss due to the unexpected drone crash, and bad landing
control.

VIII. REFERENCES

• Lecture 16 Sanket, Nitin; ENAE 788M Lecture 16
https://drive.google.com/ file/d/1jcbLtuw7ptxDDn0Djl9SUX
XX8ENVdTu2/view

• FlannMatcher
https://opencv-python-tutroals.readthedocs.io/en/latest/
pytutorials/pyfeature2d/pymatcher/pymatcher.html.


	Problem Statement
	Bridge Problem
	Law's Texture Energy Masks
	Min-Max Differential Filter
	Poor Man's Differential Filter
	Bridge Controller

	Wall Problem
	Wall Control Strategy
	Results
	Lessons Learned
	Conclusion
	References

