
Avoid the wall and find the bridge - USING 1
LATE DAY

Mrinalgouda Patil
Alfred Gessow Center of Excellence

University of Maryland
College Park, Maryland 20742
Email: mpcsdspa@gmail.com

Curtis Merrill
Alfred Gessow Center of Excellence

University of Maryland
College Park, Maryland 20742

Email: curtism@umd.edu

Ravi Lumba
Alfred Gessow Center of Excellence

University of Maryland
College Park, Maryland 20742

Email: rlumba@umd.edu

Abstract—This paper examines the challenge of target detec-
tion and tracking using the bebop parrot quadcopter. The first
model problem used to examine this problem was finding a bridge
and crossing a river. This involved detecting a blue river and not
crossing it, while simultaneously searching for a river. Only when
the bridge was successfully identified could the river be crossed
(over the bridge). The second model problem involved avoiding a
wall. After takeoff, the quadcopter would see a wall that would be
high (¿ 1m off the ground) or low (¡ .5m below the ground). The
quad must identify which configuration the wall was in and then
fly between two poles supporting the wall (above or below the
wall depending on the walls position). For both of these problems,
the vision identification method is introduced. Finally the overall
controller logic combining a closed loop controller and the vision
software is presented.

I. INTRODUCTION/PROBLEM STATEMENT

The goal of this object is to complete two seperate tasks with
the bebop quadrotor. This first task involves using a bridge
to cross a river. The enviornment will be set up as seen in
Figure 1, and the quadrotor is no allowed to cross the river
unless over the bridge. The quadrotor must move to the river
(without crossing it), and then search along the river until it
finds the bridge, only crossing the river at this point.

Fig. 1. The quad must find the bridge and use it to cross the river.

In the second task, the quadrotor must detect and avoid a
wall. The wall has dimensions (1mx1.25m), and can be placed

in either a high or low configuration, as seen in Figure 2.
The quadrotor will be initially placed about 2-3 meters away,
roughly facing the wall with up to 15 degrees of yaw. The
quad must detect the wall, determine if it is a high or low
wall, center itself, and then fly through the poles used to hold
the wall. The quad may not exceed a height of 2.5m for this
project. The wall has been marked with extra features to help
with detection.

Fig. 2. The quad must detect if the window is low or high and adjust its
flight path correspondingly.

II. FIND THE BRIDGE

The bridge task was broken into several different com-
ponents. The main piece was the visual portion, or actually
identifying the bridge. This was done using the bottom stereo
camera. The second component was the controller, or how to
make the quad fly to a desired location. Finally, we needed to
merge the two components together to complete the mission
efficiently. This is covered into the integration section.

A. Identifying the Bridge

To identify the bridge and the river, the bottom facing stereo
camera was used. For a single image, a window is swept
through the entire image without overlap. The size of this
window is a user input, and was taken to be 17 pixels (square
window) for this testing. For each window, the variance of the
greyscale values is computed. If this variance is lower than a
threshold (taken to be 200 for this analysis), then this square
is marked as a possible river. This results in an image as seen
in Figure3.



Fig. 3. All of the areas with uniform grayscale values are river candidates.

Next, a filter is applied to find the exact river. This involves
taking the median and standard deviation of the y values (in
image frame) for the center of each river candidate. Then,
only the candidates that are within a certain percentage of the
standard deviation from the median are kept. This technique
relies on the fact that the river will lead to many more
river candidates than false detections, and that the quad has
relatively small yaw relative to the river. After filtering, the
image from Figure 3 will turn into Figure 4.

Fig. 4. Filtering the River candidates by y position (in camera frame) allows
for the river to be found identified correctly.

After identifying the river, the code will look for gaps in
the river, as this will indicate the bridge. The window size
was tuned so that neither the bridge or the river in between
the bridge panels will register as river candidates. If a gap is
found, the code first checks if it is greater than a certain pixel
value that corresponds to the approximate size of the bridge.
If all of these conditions are met, the position of the bridge in
the image frame is equal to the position of the center of the
gap in the river, shown in Figure 5.

Fig. 5. The largest gap in the river is assumed to be the bridge - as long as
this gap is larger than a certain threshold.

The physical position of the bridge relative to the quad is
found using a similar method to the scheme implemented in
Project 3b - Bullseye. Based on the height from the odometry
and the position of the bridge in the image frame, the physical
X and Y positions can be calculated using the following
equations.

1) Averaging Scheme: The procedure above works very
well for a single measurement, however there can be some
outliers. To ensure that these outliers are not used, multiple
measurements were used for each command. The procedure
outlined above was run for 5 different images, and the position
of the bridge is identified in all. If 3 or more images do not
see the bridge, this means that the bridge is assumed not to
be in view, and the search algorithm takes over (explained in
integration section). If 3 or more images do see the bridge,
then the physical coordinates of where the bridge is relative
to the quad are compared. If the standard deviations of these
points are below a certain tolerance, only then does the code
believe it is able to see the bridge. Lastly, these coordinates
are sent to the controller.

B. Controller

A closed loop controller was used to move the quad to
any given waypoint. This controller uses feedback from the
odometry given by the bebop quad itself to accurately navigate
to any point. For more information, refer to the report from
Project 3a - Mini Drone Race.

C. Integration

There were two codes created for the previous two sections
that run well on their own - the last task was integrating them
so they run well together.

First, we addressed to problem of the quad trying to
establish the position of the bridge during flight. We were
able to find the bridge in flight, but the position of the bridge
would vary, as it was the position of the bridge relative to the



quad at the instant that the image was obtained. This meant
that the spread of bridge locations would be high and would
be indistinguishable from false detections. Two methods were
conceived to address this. The first involved adding the bebop
odometry to the bridge finding code, so that the position of
the bridge could be relative from some arbitrary point to
account for the movement of the quad. The second method
involved waiting until the quad had reached a waypoint until
it looked for the bridge. The second method was simpler and
didn’t add much more time compared to the first method so
it was implemented.

The code was setup such that the quad would hover and
look for the bridge. After 5 images, the bridge finder would
send one of three messages to the controller. These messages
included a flag and coordinates, packaged in pose message.
We assume the orientation is fixed to where the quad is
perpendicular to the river so the orientation is not needed.

1) For a flag equal to 0, the bridge finder code was not
able to find the bridge. This could mean that there
were no gaps in the river large enough or that the
bridge measurements were too scattered, indicating false
detections. In this case, the controller is instructed to
move the left .75m.

2) When the flag is equal to 1, the bridge finder is able
to find a good estimate for the bridge. The coordinates
included in the message indicate the x and y position
of the bridge relative to the quad. The controller moves
to a certain distance behind the bridge, set to be .7m in
preparation to cross.

3) When the flag is equal to 2, the bridge finder indicates
that the quad is converged to its desired location pre-
crossing the bridge, set to be centered in y and offset
back from the bridge by .7m. At this point, it moves
forward 1.5m to cross the bridge.

After receiving a message, the controller will move to the
desired waypoint, and then send a message to the bridge
finder code to again look for the bridge.

It was decided to only move over .75m if the river is not
detected, as this would give us multiple attempts to see the
river. For example, at 1m height, we can see roughly 2m in
width with out camera. However, even, with the filter, we have
still gotten false detections (due to the carpet itself fluttering
when the quad is nearby) or we have not been able to pick up
the bridge with one sample set. However, moving only .75m
will allow us at least 2 attempts to find the bridge, which has
worked consistently so far.

III. AVOID THE WALL

The front camera was used to during this portion of the
project. The approach was developed with the assumption
that the quad would be placed between 5 and 10 ft with the
quad being able to see at least half the wall at takeoff. For
cases outside the bounds listed the quad still might be able to

complete the mission, however those cases must be tested and
performance would be much less robust.

A. Wall Detection

To detect the location of the wall, feature matching from
sequential images of the front facing monocular camera
was used. In each image that was captured by the camera,
features were detected using the OpenCV Orb detect and
compute function. The OpenCV matcher BFmatcher was then
used to detect feature matches with the previously captured
image. The locations of the feature matches along with the
disparities were then stored. To make an initial estimation of
which feature detections were in the foreground of the image
and which ones were in the background, the feature matches
were run through a select K means clustering algorithm
by disparity with K = 2. This gave a pretty reasonable
determination in which features were detected on the wall
and which ones were in the background.

To further filter out bad feature matches, the ”good” feature
matches were saved for the previous two images received, and
then a median/standard deviation filter was applied to remove
feature matches that were spatial outliers compared to the
rest of the features. This further reduced the number of false
features estimated to be on the wall. To estimate where the
center of the wall was in the image plane, the 5 maximum
and 5 minimum x and y values corresponding to the filtered
feature matches were taken and the corners of the wall were
estimated by taking the medians of these samples. From there,
the center was estimated to be the centroid of these corners.
We found this method for estimating the centroid of the wall
to be more accurate than simply taking the mean of all features
thought to be on the wall.

B. Wall Avoidance

To avoid the wall, it was advantageous to be able to
estimate the position of the quad relative to the centroid of
the wall. To accomplish this, we needed to be able to estimate
depth, or how far away the quad was from the wall, so that the
conversion between image frame and real world coordinates
could be computed. It was discovered that estimating depth
using the disparities between two successive camera frames
was very imprecise due to the very small distance between
the two images. To solve this problem, upon takeoff, the quad
would take an image, would then travel up 0.35 meters, take
a second image, and then use the wider distance between the
two images to compute the wall depth at the initial position.
Odometry was then used to update the depth estimate in each
successive frame. With depth, the centroid of the wall relative
to the quad could be computed in physical units, granting the
ability to generate waypoints to give to the quadcopter.

To avoid the wall, the depth was first computed, and then the
quad then determined whether the wall needed to be traversed
over the top or underneath. Given the altitude of the quad and
the position of the centroid and edges of the wall relative to



the quad, the distance from the floor to the bottom of the wall
could be computed. If there was 1 meter of space, the quad
would determine it should go under the wall, if there was less
space, the quad would decide to go over the wall. After this
decision was made, the quad was programmed to align itself
up with the center of the wall side to side, and either the top
or bottom edge of the wall (depending if it would go over
or under) while being about 1.5 meters away. Once the quad
converged on this point using feedback from the wall centroid
estimation, a command was then given to either raise or lower
elevation to provide sufficient clearance to avoid the wall, and
then the quad was instructed to proceed forward until it passed
the plane of the wall, at which point it was instructed to land.

C. Controller

A closed loop controller was used to move the quad to
any given waypoint. This controller uses feedback from the
odometry given by the bebop quad itself to accurately navigate
to any point.

D. Integration

Similar to the bridge problem, there were two codes that
were used for this task - one that handled the vision and one
that handled the movement. This section addresses how these
codes were integrated together.

After takeoff, the controller would send a message to the
vision code to take a picture. Next, the controller would move
the quad up .35m, before again sending a message to the
vision code to take a picture. At this point, the vison code
would calculate the depth from the disparity between the two
pictures.

Next, the vision code would send the depth and the relative
position of the wall relative to the quad back to the controller.
The controller would move roughly 1/3 of the depth toward
the wall and attempt to center itself in y and z (for the quad).
After this, coupling iterations would begin. After the quad
had reached the desired waypoint, the controller would send a
message to the vision code and it would calculate the lateral
distance needed to center the quad on the gate (as mentioned
earlier, the coupling iterations don’t use z, as if the full gate is
not found, the z estimate for the gate center will be off. Only
the initial estimate for Z before moving closer is used). This
process was repeated until the quad was relatively centered
on the gate center.

This process does not involve any yaw, so it only works if
the initial yaw position is relatively small (¡ 35 degrees). This
just means that the quad will fly through the gate at an angle.

IV. RESULTS

A. Find the Bridge

During the testing, the quad was able to find the bridge
relatively quickly on the first attempt. However, it did not see
the bridge the first possible opportunity, instead moving past

the bridge and then coming back to it. We believe that this
was because the lights were lower than we had tested out
(the other team was testing with lower lights and we forgot to
change). When the lights are lower, there is less difference in
pixel values on the surrounding carpet, leading to false river
detections (we were tuned for 100 percent light). However,
despite this the quad was still able to find and cross the river
on the first attempt.

B. Avoid the Wall

During the live demo, the wall was placed in a ”medium”
position - the bottom of the wall was roughly .5m above the
ground. This first time, the quad was not able to detect the
proper z location of the wall. However, the second attempt,
the quad was able to sucessfully detect and fly over the wall.

V. CONCLUSION AND LESSONS LEARNED

One of the problems that we initially had was if we were
too close to the wall, the field of view on the camera in the
y direction (camera frame) was too small so that the camera
couldn’t see very much of the wall. This would lead to an
estimation that the center of the wall was either higher or
lower than it actually was, and would occasionally cause the
quad to fly too high or low so that the wall left the camera’s
field of view completely. The way that we got around this
was by having the controller only make adjustments to its
height when the quad was far away so that it could keep
most of the wall in the field of view at all times. Another
way to address this problem would be to use a different
resolution on the camera so that the field of view isn’t cropped.

The second major lesson learned was about computational
time. During initial testing of the bride finding algorithm,
cv.circle was called many times for each pixel that was a river
candidate (just for tuning using Rviz). On a laptop, this code
could process one image in roughly .05-.1 seconds. However, it
took over 1.5 seconds on the upboard. When the visualization
was changed to cv.rectangle for the window instead of a nested
for loop with cv.circle (1 cv.rectangle vs. 17*17 cv.rectangles),
the time reduced back to around 10 Hz.

REFERENCES

[1] ENAE788 Class 5 Slides
[2] Some Code taken from learnopencv.com/rotation-matrix-to-euler-angles/


