
Wall Avoidance and Bridge Detection - USING 1 LATE DAY

Team sudo rm -rf *

Abhishek Shastry
Department of Aerospace Engineering

University of Maryland
College Park 20742

Email: shastry@umd.edu

Animesh Shastry
Department of Aerospace Engineering

University of Maryland
College Park 20742

Email: animeshs@umd.edu

Nicholas Rehm
Department of Aerospace Engineering

University of Maryland
College Park 20742

Email: nrehm@umd.edu

Abstract—In this report, an algorithm for wall avoidance and
bridge detection/navigation with the PRG Husky is presented for
ENAE788M: Hands on Autonomous Aerial Robotics. For wall
avoidance, position information from the bebop’s odometry is
used in conjunction with temporally matched features from the
forward facing video feed. This enables depth of matched features
to be estimated and the features to be clustered to determine
the position and height of the wall. For bridge detection, the
downward facing gray scale video feed is used to directly detect
the bridge by generating a feature mask to isolate featureless
areas, and then threshololding for the brightness of the bridge.
Position and orientation can then be found which is used to
generate a path across the bridge in the correct direction. Results
show that precautions must be taken to ensure good feature
detection for the wall avoidance algorithm to be successful and
that the method of bridge detection is very robust.

I. INTRODUCTION

Quadrotors navigating in an unknown environment require a
method of identifying obstacles in front of them to avoid col-
lision. They may also need to use cues on the ground in order
to generate a flight path, but may be limited in their downward
facing sensor package. Wall detection can be achieved through
a combination of onboard odometry and a forward facing
camera. Features can be temporally matched from the forward
facing camera image to determine disparity due to the known
(estimated from odometry) change in quadrotor pose. Features
detected in the foreground can be grouped to estimate the
distance to and size of a planar surface such as a wall. In
some cases, downward facing sensors may be limited to a
grayscale camera which cannot detect colored features such
as a river and bridge. In this case, alternative technique must
be employed. Texture can easily be extracted from a grayscale
image and thus the image can be segmented into featured and
featureless areas. This method can be exploited and used in
conjunction with brightness thresholding to extract particular
features, such as a relatively brightly colored bridge with little
texture.
Link to the result videos: Click Here

II. HIGH RESOLUTION BRIDGE DETECTION AND
NAVIGATION

Bridge detection is achieved through the generation of an
isolated bridge mask. Position and orientation of the bridge
relative to the body frame of the quadrotor is estimated using
the known geometry of the bridge and pre-defined mission
altitude. Our method is extremely robust in rejecting any
surface/texture that is not the bridge.

A. Bridge Mask
A binary mask of the bridge is generated from the grayscale

downward facing duo camera using the following method.
Figure 1 shows an example image (extreme case) in which
our method of image processing is implemented.

Fig. 1. Example of grayscale image from duo camera.

https://www.youtube.com/playlist?list=PLTSCOv-lGtMYtMIeO_RnG7yxKEO_jQLha


1) Featureless areas: Featureless areas of the image are
found by aggressive canny edge detection (Figure 2). The edge
mask is dilated to fill the featured areas and inverted to produce
a mask of the featureless areas.

Fig. 2. Aggressive canny edge detection on test image tuned such that
”featureless” areas have few detected edges.

2) Bridge from featureless areas: Of the featureless areas
(Figure 3), the bridge can be isolated by means of a simple
brightness threshold (Figure 4).

Fig. 3. Featureless areas of the original image. Note brightness of bridge
compared to the river and black foam mats.

Fig. 4. Mask of bridge after brightness thresholding of featureless mask.

B. Bridge Position and Orientation Estimate

Using the bridge mask in Figure 4, the bridge position and
orientation is easily found with the following method.

1) Polygon fitting: A polygon is fit to the largest contour
in the bridge mask image and the four corners are found.

Fig. 5. Polygon fitted to largest contour of bridge mask with four detected
corners.

2) Center detection: The center of the bridge is found by
taking the average of the four corner coordinates that were
found in the previous step. These are then converted from
normalized pixel coordinates to units in the quadrotor body
frame using the focal length of the duo camera and prescribed
mission altitude as the known depth.

3) Orientation detection: The lengths of each of the fitted
polygon sides are computed. The slope of the two longer
sides are averaged to find the orientation across the bridge.
Depending on the location of the bridge in the frame and
the angle of the river (assumed normal to the angle of the
bridge), the proper orientation across the bridge from the
current position is computed. If only half of the bridge is



detected on the edge of the frame, the pixels of the bridge mask
on the edge of the image are used to compute orientation as
the previous method would incorrectly compute the orientation
normal to the true orientation due to the proportions of the
cut-off detected bridge. This method of orientation detection
can accurately compute the correct path across the bridge
regardless of it’s relative angle or position in the image frame
as shown with the difficult example in Figure 6.

Fig. 6. Final detected bridge center and correct orientation to traverse across
it.

C. Mission Planner

The position and orientation across the bridge in the body
frame of the quadrotor is filtered with a simple low pass filter
to reduce noise and the effect of outliers in the estimates. The
quadrotor follows a search path from left to right along the
river until the bridge is detected. Using the filtered position and
orientation estimate, a waypoint .5 meters before the bridge
is computed in the inertial frame and published to the outer
loop controller. After converging on this waypoint, a second
waypoint is published 1 meter across the bridge. The quadrotor
converges to this position and the mission is complete.

III. LOW RESOLUTION RIVER AND BRIDGE DETECTION

Based on features the image can be segmented into two
parts - relatively highly featured areas and areas with relatively
very low features. To do this the image is divided into
blocks/patches of a certain pixel size n (which depends on the
camera’s height) and a score is calculated for each block/patch.
The score is supposed to represent the “amount” of intensity
variation in the image patch. The score for each of the patches
is then scaled to create a very low resolution image containing
the relative pixel intensity variation. A simple thresholding on
this image will produce a binary image with areas that have
relatively low intensity variation, denoting the river. Note, that
the bridge has edges and hence, it is not classified as river.
Now, the bigger blobs represent the river and their centers
can be calculated by contour moment calculation. The smaller
blobs represent the bridged area, and the mean of their centers

will give the bridge’s center. The orientation is found by
calculating a vector that is perpendicular to the slope of the
detected river, defined by the line joining their centers. The
advantage of using this algorithm is that it is invariant to
lighting conditions, but the disadvantage is that the bridge’s
location estimate is less accurate due to the creation of image
patches, resulting in lower resolution.

Fig. 7. Original Grayscale Image

Fig. 8. Batch wise scoring with score = k (max(I)−min(I))



Fig. 9. Batch wise scoring with score = k/ (max(I)−min(I))

Fig. 10. Binary Image showing areas with less features, i.e, river as white.

Fig. 11. The center of the rivers overlaid on the original image.

Fig. 12. Estimated bridge’s position based on the river’s discontinuity and
orientation based on the perpendicular vector to the river’s direction.

IV. WALL DETECTION AND AVOIDANCE

A. Feature Detection and Matching

From the front monocular camera, two consecutive
images separated by a non-zero time and spatial
distance are obtained on which features are detected
and matched to get pixel displacements in normalized
image coordinates. The feature matching is achieved
by generation of ORB features in the two images and
their brute-force matching. This implemented in OpenCV
by creating the objects orb = cv2.ORB_create()
and bf = cv2.BFMatcher(cv2.NORM_HAMMING,
crossCheck = True) along with using the functions
orb.detectAndCompute and bf.match.

B. Depth Estimate

Two methods have been implemented to estimate the depth
and subsequently triangulate the matched features.

1) The velocity information from the quarotor’s odometry
can be used as a real-world measure of the spatial motion
of the two consecutive monocular frames. The depth of
each ith feature is estimated by solving for Zi in the
following optical flow equation.

[
ẋ
ẏ

]
i

=

− 1
Zi

0 xi

Zi
xiyi −1− x2i yi

0 − 1
Zi

yi

Zi
1 + y2i −xiyi −xi



Vx
Vy
Vz
Ωx

Ωy

Ωz


(1)

To simplify the above equation the quadrotor can be
constrained to move linearly and hence the angular
velocity terms can be dropped. The optical flow equation
now assumes the form given below.

[
ẋ
ẏ

]
i

=

− 1
Zi

0 xi

Zi

0 − 1
Zi

yi

Zi

VxVy
Vz

 (2)



It is preferred that the quadrotor moves parallel to the
wall to reduce the risk of the quadrotor hitting the wall.
The z-velocity term can now be dropped to simplify the
equation even more.

[
ẋ
ẏ

]
i

=

− 1
Zi

0

0 − 1
Zi

[Vx
Vy

]
(3)

The Zi estimate can now be calculated by taking the
ratio of the norm of the optical flow vector and the norm
of the Quadrotor’s velocity vector.

Zi =

√
ẋ2 + ẏ2

V 2
x + V 2

y

(4)

A sample point cloud generated by this method and
thresholded by depth and magnitude of optical flow, is
given in Figure 13

Fig. 13. Wall Point cloud generated by velocity and optical flow matching.

2) Two camera images separated by a known distance,
called the baseline, can form a stereo pair. The quadrotor
can be made to move in space sinusoidally, and images
can be taken from the front monocular camera at the
extreme ends of the sinusoidal motion. Features are then
extracted and matched to get the pixel displacement
on the normalized image coordinates. The depth is
computed by taking the ratio of the norm of the pixel
displacement to quadrotor’s displacement.

Zi =

√
∆x2 + ∆y2

∆X2 + ∆Y 2
(5)

By using this method, we get much better estimate of
depth as the baseline of the constructed stereo camera
pair can be as large as possible. Additionally, the filtering

of the bad feature matches and features that are not on
the wall is made more robust by the use of this method.
A sample sparse depth map image, color coded based
on depth is shown in Figures 14.

Fig. 14. Sparse depth map. The red/blue points represents either the feature is
too close/far or the feature matching is bad. The green points have acceptable
depth values and are considered as a part of the wall.

A sample point cloud generated by this method and
thresholded by depth and magnitude of pixel displace-
ment, is given in Figure 15

C. Wall Position Estimate

The wall position is estimated by taking the mean of the ex-
treme feature’s normalized pixel coordinates and triangulating



Fig. 15. Wall Point cloud generated by stereo construction with a baseline
of 0.4 m.

it by using the mean of all the feature’s depth value.

Z =
1

n

n∑
i=0

Zi

X =
Z

fx

[
1

2
{min(xi) + max(xi)} − cx

]
Y =

Z

fy

[
1

2
{min(yi) + max(yi)} − cy

]
D. Mission Planner

A typical conditional threshold on the wall’s lower edge,
max(yi) has been used to make the decision of going over or
under the wall. In both the cases for generating the desired
height of the waypoint, an offset of 0.5 m from the Upper
Edge or Lower edge based on the decision is provided. After
estimating the wall’s location the X and Y coordinates of the
waypoints as well as the desired heading are generated by the
following transformation.

ψd = arctan(Y/X)

Xd = X ± 0.5 cos(ψd)

Yd = Y ± 0.5 sin(ψd)

V. RESULTS AND CONCLUSION

The methods for bridge navigation and wall avoidance
implemented here were successful in repeatedly carrying out
their respective tasks. The bridge detection algorithm provided
no false detections (*under the correct lighting conditions)
allowing the vehicle to immediately cross the bridge after
detection every trial. The only case in which a false detection
occurred is when the lighting conditions were not set correctly
according to the tuning of the algorithm. Robustness to scene
brightness could be improved by including a pre-flight auto-
exposure procedure. It was also found that a simple low pass
filter is effective in rejecting noisy detections of the bridge,

though EKF still provides protection in the case of a lone
outlier. The wall detection algorithm was proven to repeatedly
correctly identify the wall height allowing the vehicle to
navigate over or under it. Our method of depth detection by
defining our own baseline through quadrotor position worked
well but did not provide a large number of data to refine the
position estimate of the wall. The accuracy of this method with
such a large baseline negated the need for more data points
since it was overall more accurate. Pre-processing the image
to give a sharper view of the scene may help with feature
matching while the vehicle is moving to provide true temporal
feature matching.


	Introduction
	High Resolution Bridge Detection and Navigation
	Bridge Mask
	Featureless areas
	Bridge from featureless areas

	Bridge Position and Orientation Estimate
	Polygon fitting
	Center detection
	Orientation detection

	Mission Planner

	Low Resolution River and Bridge Detection
	Wall Detection and Avoidance
	Feature Detection and Matching
	Depth Estimate
	Wall Position Estimate
	Mission Planner

	Results and Conclusion

