
Barrel Detection using Color Segmentation based
on GMMs

Nitin J. Sanket
School of Engineering and

Applied Science
University of Pennsylvania

Email: nitinsan@seas.upenn.edu

Abstract—This project presents an approach for robust color
segmentation which was further used to detect a red barrel
based on shape statistics. Several algorithms are presented to
tackle variations in illumination, occlusion and tilt. The color
segmentation was accurate for all the images in the test set,
however, the barrel detection algorithm missed one of the barrels
in the test set. The shape statistics were finally used to compute
the distance to the barrel along the camera Z axis.

I. PROBLEM STATEMENT

The aim of the project was to segment out colors repre-
senting a ‘red’ barrel given 50 training images by building
a probabilistic model, use shape information to compute the
distance to the barrel along the camera Z axis. The algorithm
was tested on 10 unseen images.

II. TRAINING

The whole procedure of training is discussed in the follow-
ing sub-sections.

A. Acquiring Data Samples

The training set was split into 2 sets, i.e., training set con-
taining 41 images and a held out set containing the remaining
9 images. The images were picked so as to have both dark and
light, near and far images in the testing and held out set. The
masks which depicted the ‘barrel red’ pixels were manually
labeled. A sample RGB image and its corresponding mask
is shown in Fig. 1. All the RGB values from all the pixels
corresponding to ‘barrel red’ from the chosen 41 training
images were used stacked (GMM has a slightly different
procedure which is later explained) to get the training set.
Let us say this was of the size N ×D where D is the number
of dimensions which is 3 in our case and N was the order of
0.6 Million. Next section talks about color space conversion
and the need for it.

B. Alternative Color Spaces

It is a well known fact that RGB color space is not robust
to illumination variations but it is used because it is the most
intuitive way we perceive color. To make the algorithm robust
to illumination, YCbCr color space was used. A RGB image
with this R, G and B channels is shown in Fig. 2. Clearly one
can observe that the red channel has a high value for the barrel
but it also has a high value for white colored things. Also, the
green channel dominates the intensively calculation and hence

is not variant to illumination. This problem is solved to some
extent in YCbCr color space and its components are shown in
Fig. 3. RGB to YCbCr converstion is given in below.

 Y
Cb
Cr

 =

 0.299 0.587 0.114
−0.169 −0.331 0.5

0.5 −0.81 −0.81

 R
G
B

As we are looking at a red barrel, red channel stands

out the most however this value is relative hence I made a
custom color space (rYb) based on Rred-Green Chromaticity
and YCbCr (To account for illumination variations). The 3
channels r, Y and b are defined as follows:

r = R
R+G+B

Y = 0.299R+ 0.587G+ 0.114B
b = B

R+G+B

rYb color space and its components are shown in Fig. 4
Clearly the barrel stands out much better in YCbCr and rYb

color spaces than RGB. A visualization of all the datapoints
from 41 images plotted in the 3 different color spaces is shown
in Fig. 5.

Ideally, all the points should constitute as small a area
as possible to show that they can be fit by a gaussian with
low variance. Clearly, rYb has the smallest area followed by
YCbCr and then worst being RGB as expected. So all the
further steps were carried out on rYb and YCbCr color spaces.

Fig. 1. Left image shows the RGB image and Right image shows the hand
labeled mask corresponding to ‘barrel red’ pixels.

Fig. 5. Left to right: Data points in RGB, YCbCr and rYb color spaces.

Fig. 2. Left to right: R, G, B, RGB channels of the image.

Fig. 3. Left to right: Y, Cb, Cr, YCbCr channels of the image.

Fig. 4. Left to right: r, Y, b, rYb channels of the image.

C. Fitting a single Gaussian Model

The simplest model we can fit is a single gaussian to the
data. The gaussian represents P (x|cl) and is given by

P (x|cl) =

√
detA

(2π)
3 e

−1
2 (x−µ)TA(x−µ)

µ = 1
N

∑
ν
xν

A−1 = 1
N

∑
ν

(xν − µ)i(x
ν − µ)j

The surface plot of the fitted gaussians for the 3 color spaces
are shown in Fig. 6.

Clearly the volume occupied by the ellipsoids decreases as
we go from RGB to YCbCr to rYb. The next more complex
model was to fit a Gaussian Mixture Model (GMM) with
shared diagonal co-varience (Form Σ = σ2I). This leads to
spherical gaussians of same size. A sample output for spherical
GMM on RGB color space is shown in Fig. 7.

The next logical step was fitting a full fledged GMM with
variable variances and cluster weights.

Fig. 7. Spherical GMM output on RGB color space.

D. Gaussian Mixture Model with Non-Shared Variances and
cluster weights

The GMM algorithm works by using a expectation max-
imization procedure. The following equations govern the
GMM.

P (x|cl) =
∑
k

πk

√
detA

(2π)
3 e

−1
2 (x−µk)TA(x−µk)

The above equation gives the likelihood of datapoint given
the color label. In the E Step, compute the cluster weights are

Fig. 6. Left to right: Single gaussian model surface plot of ellipsoid in RGB, YCbCr and rYb color spaces.

calculated as
ανk =

P (xν |cl)πk∑
k

P (xν |cl)πk

In the M Step, compute the means, covariances and cluster
weights as

µk =

∑
ν
ανkx

ν∑
ν
ανk

Σk =

∑
ν
ανk(x

ν−µk)T (xν−µk)∑
ν
ανk

A = (Σk)
−1

πk = 1
N

∑
ν
ανk

To compute the (x− µk)
T
A (x− µk) term fast,

(x− µk)
T
A (x− µk) =

∑
i

xi
T ⊗XrTi

Where xTi is the ith column (size N ×1) of the stacked mean
centered values X which is of size N ×D. ⊗ is the element-
wise multiplication operation. rTi is the ith column of D×D
A matrix. Here i refers to the dimension, i.e., for RGB it is
1, 2 or 3. The algorithm for the GMM algorithm using EM is
given below [1]:

Data: ColorSpace Datapoints
Result: K Gaussian mixtures which model the data
Choose π, µ,Σ randomly or using K-Means;
while

∥∥µt − µt−1
∥∥ ≥ τ do

Estimate P (cl|x) ∝ πkN(xi;µk,Σk) Estimate new
µk, πk,Σk as given above

end
Algorithm 1: E-M algorithm for GMM.

A plot of GMM outputs for all color spaces is shown in Fig.
8. Surprisingly, all the gaussians converged to a single gaussian
in rYb showing that it has the most compression power of the
3 color spaces.

Another thing I experimented was with different ways
of initializing the GMM. I used the output of K-Means to
initialize my GMM. This was more consistent in terms of

Fig. 10. Left to Right: Input RGB image, P (x|barrel).

convergence where convergence was defined as norm of
difference of means should be within a particular threshold.
K-Means consistently gave a good convergence speed
and almost similar outputs everytime. However, random
initialization sometimes gave better segmentation results but
also sometimes gave complex values in covariance matrix and
hence divergence. A sample output for K-Means and Rand
initialization for YCbCr color space is shown in Fig. 9.

Selection of K:
For selecting the value of K (number of clusters) for GMM,
these 41 images were divided into 35 and 6 images
randomly and this was done 5 times to choose the best K.
Final GMM model used in testing was retrained on the 41
images with these K number of clusters.

III. TESTING/EVALUATION METHODOLOGY

First step was computing the probability of datapoint given
barrel using GMM. This was done using

P (x|cl) =
∑
k

πk

√
detA

(2π)
3 e

−1
2 (x−µk)TA(x−µk)

I assumed that the P (x) and P (cl) was a constant due to
drawing from a uniform random distribution and neglected
them. Hence I used P (x|cl) as the estimate for P (cl|x). A
sample input RGB image and its corresponding P (x|barrel)
are shown in Fig. 10.

Fig. 11. Mask (M) obtained by thresholding P (x|barrel).

Fig. 12. M after some filtering (M1).

Fig. 13. M1 after labelling.

This was then thresholded based on a fraction of maximum
value to obtain a Mask. The mask is shown in Fig. 11.
Then the blobs in the mask after erosion which do not
satisfy some area and solidity criterion are removed to
remove some stray blobs like the one belonging to a bicycle
and so on. Then the blobs are dilated to factor in for the
erosion, sometimes this step merges the blobs due to
occlusion. However, this is not very robust for occlusion
removal. Hence a custom algorithm for combining blobs
based on solidity was written. Consider the image shown in
Fig. 12, this image after labelling is shown in Fig. 13. A
simple illustration of the process is shown in Fig. 14. Here,
each blob is compared to every other blob and if they satisfy
a distance threshold (closer than some distance), they and
combined and the resulting solidity is measured. If the
solidity satisfies some threshold they are kept. In Fig. 14 the
blobs are combined and their convex hull is found, this is
shown in Fig. 15.

Fig. 14. Illustration of how combining blobs work.

Fig. 15. Blobs combined.

Next step was to compute the oriented bounding boxes and
blobs that do not satisfy a range of aspect ratio are removed.
The distance is estimated using a linear regression model fit
on inverse height and inverse depth of the oriented bounding
box.

IV. RESULTS ON THE TEST SET

The results on YCbCr color space for the Test Images are
shown in Figs. 16, 17, 18, 19, 20, 21, 22,23, 24 and 25.
Here the yellow highlights indicate the initial mask obtained
by titleholding P (x|cl), the green highlights indicate the
final mask after all the blob elimination process. The red dot
indicates the centroid, the red box shows the oriented
bounding box. The distance and orientation are indicated in
a white box next to the centroid.
The results on rYb color space for the Test Images are
shown in Figs. 26, 27, 28, 29, 30, 31, 32,33, 34 and 35.
Here the yellow highlights indicate the initial mask obtained
by titleholding P (x|cl), the green highlights indicate the
final mask after all the blob elimination process. The red dot
indicates the centroid, the red box shows the oriented
bounding box. The distance and orientation are indicated in
a white box next to the centroid.

Fig. 8. Ellipsoidal GMM output on RGB, YCbCr and rYb color spaces.

Fig. 9. Left to Right: K-Means and Rand initialization convergence results on YCbCr color spaces.

Fig. 16. Output YCbCr 1.

Fig. 17. Output YCbCr 2.

Fig. 18. Output YCbCr 3.

Fig. 19. Output YCbCr 4.

Fig. 20. Output YCbCr 5.

Fig. 21. Output YCbCr 6.

Fig. 22. Output YCbCr 7.

Fig. 23. Output YCbCr 8.

Fig. 24. Output YCbCr 9.

Fig. 25. Output YCbCr 10.

Fig. 26. Output rYb 1.

Fig. 27. Output rYb 2.

Fig. 28. Output rYb 3.

Fig. 29. Output rYb 4.

Fig. 30. Output rYb 5.

Fig. 31. Output rYb 6.

Fig. 32. Output rYb 7.

Fig. 33. Output rYb 8.

Fig. 34. Output rYb 9.

Fig. 35. Output rYb 10.

Fig. 36. Left to Right: P (x|cl) computed using pixels and super-pixels.

Fig. 37. Left to Right: Original Image, Image blurred using average/box filter, Image blurred using anisotropic diffusion.

A. Analysis of the Results
If the blobs were too big, the combined bounding box had a
wierd shape like Figs. 17 and 27, this is due to the
combination algorithm and the way I generated the convex
hull using oriented bounding boxes. Both the color spaces
failed in the image where the barrel was too bright, this is
because my training set did not have very bright images
(Refer to Figs. 20 and 30). Both my color spaces took the
chair red color thereby underestimating the distance because
my training images had more dark images (Refer to Figs. 25
and 35).

V. OTHER INTERESTING STUFF I DID

A. Superpixel Segmentation to improve probability scores
If the illumination variation is severe on the barrel, the pixel
probabilities can jump a lot, blurring the image will change
the pixel values to something other than red. For eg. i.e., if
light is shining directly on the barrel and the barrel is shiny,
the pixels might be white, blurring it will give us pink or
orange which is undesirable. So a more robust probability
assignment can be obtained by the usage of superpixels.
5000 superpixels generated from Entrpoy Rate Superpixel
Segmentation [2] was used to achieve this. A sample
probability score output using pixels and super pixels are
shown in Fig. 36. We can clearly observe the improvement
in scores in the super-pixel based assignment. In each
super-pixel all the pixels get multiplied by the ratio of
maximum value in that super-pixel and mean value in that
super-pixel. This greatly improved the overall results by
making all the thresholds robust, but it was too slow for a
slight improvement. The code without super-pixels ran in
3secs and with super-pixels ran in 90s. A 30X slowdown for
a slight improvement was not justifiable.

B. High Frequency Noise Removal using Anisotropic
Diffusion
Simple blurring with a gaussian or a box filter will generate
wrong pixel values for training as the pixels are blurred

across the edge. Hence, an adaptive blurring technique called
Anisotropic Diffusion was used, which uses a heuristic to
blur within similar regions and not across. A sample output
comparing box filter and anisotropic diffusion is shown in
Fig. 37.

VI. IMPORTANT LESSONS LEARNT

Overfitting is a big problem and cross validation helps a lot
(which I did).
Learn to accept a few false positives to improve overall
precision (which I didn’t do).
Keep thresholds as dynamic as possible (which I did).
Sometimes silliest of the methods work the best (Which I
did).

VII. CONCLUSIONS

Overall, both rYb and YCbCr colorspaces outperformed
RGB, with rYb performing slightly better than YCbCr albeit
the numerical issues in MATLAB. I could segment the
barrel colored pixels from a crowded scene, reject non-barrel
blobs and combine split barrel blobs successfully. Occlusion
posed a bit of a challenge but was combated to a great
extent. The distance estimates on the training set were
accurate to about ±0.5m.

ACKNOWLEDGMENT

The author would like to thank Dr. Daniel D. Lee and all the
Teaching Assistants of ESE 650 course for all the help in
accomplishing this project.

REFERENCES

[1] Expectation-Maximization Theory,
http://www.informit.com/articles/article.aspx?p=363730&seqNum=2.

[2] Liu, Ming-Yu, et al., Entropy rate superpixel segmentation, IEEE
Conference on Computer Vision and Pattern Recognition, 2011.

http://www.informit.com/articles/article.aspx?p=363730&seqNum=2

	Problem Statement
	Training
	Acquiring Data Samples
	Alternative Color Spaces
	Fitting a single Gaussian Model
	Gaussian Mixture Model with Non-Shared Variances and cluster weights

	Testing/Evaluation Methodology
	Results on the Test Set
	Analysis of the Results

	Other Interesting Stuff I did
	Superpixel Segmentation to improve probability scores
	High Frequency Noise Removal using Anisotropic Diffusion

	Important Lessons Learnt
	Conclusions
	References

